在今年的德国纽伦堡SENSOR + TEST 2022大会上,与会者有幸见到了ISM330IS ——个内置智能传感器处理单元(ISPU)的传感器。意法半导体于 2022 年初发布这一技术。简单地说,ISPU是一种支持C语言的可编程嵌入式数字信号处理器 (DSP),能够运行机器学习和深度学习算法。因此,它是边缘人工智能的下一个发展方向,或者 ST 所说的“Onlife Era”时代。ISM330IS有一个单精度计算浮点单元,开运动传感器先河。
从一个想法到新一代传感器,ST克服了哪些挑战?
在这项研究启动期,ST发表了一篇研究在惯性传感器内集成机器学习的可行性论文。过去,传感器的作用就是收集数据,所有计算任务都必须在微控制器上完成,这种架构背后的原因比较简单,惯性传感器是小尺寸的低功耗设备。增加性能强大的处理器不仅会违反这些设计限制,还会带来巨大的系统集成和制造挑战。虽然在一个模块内整合了DSP 和加速度计与陀螺仪,但是ST 并未降低处理性能、内存容量和传感器的精准度。
ST在2018 年发表的这篇论文具有开创性,因为它为包含八个并行决策树、运行机器学习算法的惯性传感器LSM6DSOX解决了市场推广的难题。本地运行应用同时功耗非常低,从不可能
变成了可能。产品推出后,尤其是在将模块集成到 SensorTile.box 之后,新应用开始涌现。例如,用它开发的婴儿哭声检测器,当有婴儿被遗忘在车内时可以提示驾驶员。同样,伦敦大学学院两个项目基于此开发出了自动化站/坐监测和更便捷的数字听诊器,获得市场好评。
还有哪些传感器配备机器学习?
LSM6DSOX还标志着一个新开发者社区出现。ST在 GitHub网站提供了机器学习库,并提高Unico GUI 软件工具的可及性,帮助更多的希望利用 LSM6DSOX 的机器学习的程序员。此外,我们还发布了性能更强大的传感器。LSM6DSRX 有更好的性能,适用于虚拟现实耳机等要求更高的应用。ST还推出了 LSM6DSV16X,它具有增强的机器学习内核和更好的性能功率比,适用于功耗限制更严格的系统。因而,有机器学习的ST传感器在一定程度上加快了下一个自动化时代的到来,而 ISM330IS 在这一传奇中翻开了一个重要的新篇章。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。