LTC3643 可轻松用于 5 V 和 12 V 电压轨的备份解决方案,但是3.3 V 电压轨解决方案则需要格外谨慎。LTC3643 的工作电压为 3 V,比较接近于 3.3 V 的标称输入电压电平。如图 1a 所示,当采用一个隔离二极管将备份电压电源与非关键的电路分离时,这种余量就太紧了。如果 D1 是一个肖特基二极管,其正向压降 (作为负载电流和温度的函数) 会达到 0.4 V 至 0.5 V,足以把 LTC3643 VIN 引脚上的电压置于 3 V 值以下。因此,备份电源电路可能无法启动。
图 1. (a) 和 (b)。隔离二极管在备份系统原理图中的位
启动时,随着输入电压上升,流过电容器 CA 的电流取决于公式 ICA = C × (dV/dt)。该电流在 RA 的两端产生一个电位,此电位足以强化一个低栅极阈值电压小信号 N 沟道 MOSFET Q2。当 Q2接通时,它把 Q1 的栅极拉至地电位,在输入电压和 LTC3643 电源引脚 VIN 之间提供了一条极低电阻的通路。一旦 3.3 V 被施加至转换器,转换器立即启动,下拉 Q1 的栅极和 PFO 引脚电平,并开始给存储电容器充电。
图 2. 用于 3.3 V 电压轨的 LTC3643 解决方案的增强型原理图。
电路功能
图 3 中的波形示出了 3.3 V 电压轨启动时的结果。当输入电压上升时,Q2 的栅极电压也升高,因而把 Q1 的栅极拉至低电平。Q1 处于强化状态,允许完整的 3.3 V 电压到达 LTC3643,将 Q1体二极管旁路。,Q2 的栅极电压降至阈值电平以下且 Q2关断,此时 LTC3643 全面运行并控制着 Q1 的栅极。
LTC3643 的多功能性在这里展现出来:特别是它能够限制用于给存储电容器充电的升压型转换器的充电电流。在必须尽量减小总电流的场合中,例如:当存在长导线或高阻抗电压电源时,可把升压电流设定在较低的水平,以限度减轻充电电流对输入压降的影响。这点对 3.3 V 电压轨尤为重要。在图 2 中,0.05 Ω 电阻器 RS 为升压型转换器充电电流设定了一个 0.5 A(10.5 A 负载) 的限值 (可能设定限值为 2 A);其余的电流则输送至负载。
图 3. 上电时 3.3 V 电压轨的波形图 4 示出了失去 3.3 V 电压轨时的波形。当输入电压下降时,Q2 的栅极电压保持不变 (接近于地电位),且 Q2 处于关断状态。与此相反,Q1 的栅极电压则急剧上升至 3.3 V。这把 Q1 关断,由 Q1 的体二极管发挥隔离二极管的作用,从而使负载与输入分离。此时备份电源接管供电,LTC3643 通过释放存储电容器的电能以给关键负载提供 3.3 V。
图 4. 断电时 3.3 V 电压轨的波形
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。