移动运营商需要为其5G网络提供高 时间和相位保护,但是当依赖 导航卫星系统(GNSS)时很难做到这一点,因为 导航卫星系统很容易因人为干扰、欺骗或自然现象而导致长时间无法使用。增强型主参考时钟(ePRTC)为移动网络运营商提供一种令人高枕无忧的解决方案:即保持功能,它拥有解决问题所需的 、可靠性和性能。要成功部署ePRTC,需要充分了解构建可靠、弹性的 时间架构所需的关键要素,包括 网络运营商要求的时钟和其他相关系统。
保持5G正常运行
设想一下:移动网络速度很快,支持快速 视频,并且提供的密集5G服务能够满足多地客户的要求。突然,一切都中断了。移动服务关闭,客户指责移动运营商,运营商声誉受损,导致用户流失。GNSS中断期间很容易发生这种情况。
负责国家关键基础设施的移动运营商和团队一直在考虑采用各种方法来提供GNSS备份或者总体减少对GNSS技术的依赖。即使在 近的3G或4G移动网络中,流行的无线电技术也主要采用基于频率的同步策略。这项技术为业内所熟知,已广泛部署并且效果卓著。随着5G的到来,必须有非常严格的时间和相位 才能 地利用移动运营商所投资的珍贵频谱。避免数据冲突和频率干扰至关重要,与此同时,还需要 地缩小防护频带的范围,以增强和更有效地利用其频谱。此时,凭借 的计时便可实现此目的。
这种 级别所需的时间源主要通过GNSS提供。不过,随着5G网络的密集化,将不再考虑这种选项。无线电台或基站中缺少GNSS接收器时,需要无线电台或基站迅速停止运行,以避免由于无线电台或基站中缺少高质量保持振荡器而出现干扰问题。这种技术考虑可使基站计时减少对GPS的依赖,并逐步迁移到 时间协议(PTP)架构。移动运营商需要 地减少使用GPS的站点,同时保留极具弹性的 时间架构,以确保GNSS中断期间客户服务的连续性。
ePRTC标准是应对这一挑战的理想选择。它是ITU-T(ITU电信标准化部门)为提高时间 而定义的主参考时钟(PRTC)的几个版本之一。PRTC A类可以满足相对于协调世界时(UTC)的100 ns(纳秒) 要求。PRTC B类更 , 达40 ns。增强型PRTC具有符合ITU-T G.8272.1定义的30 ns 。
ePRTC的独特设计使其具有 弹性,能够使用铯钟作为参考时钟保持14天或更长时间,同时在整个长时间中断期内与UTC的 偏差维持在100 ns。这将成为5G移动运营商部署ePRTC的关键优势。如果GPS关闭,整个网络范围内的服务交付都将保持无缝切换。这样可确保所需时间来修复GPS中断或在GPS长时间不可用的情况下保持运行。
时钟与配件的重要性
ePRTC不能单独运行。高质量ePRTC的 原理是通过产生独立自主的时标来产生时间。时标将提供时间、相位和频率,随着时间的推移,这几个参数会根据GNSS信号进行调节和校准。高质量ePRTC引擎使用获得 的测量算法来评估和测量其相对于GNSS的自主时标偏移。
ePRTC系统的方法可为自主的主时间源设置时标,而铯原子钟和GNSS可帮助保持ePRTC时标的准确性。
因此,在理想情况下,应将ePRTC连接到GPS时钟和原子钟(铯原子钟通常用于 地提高弹性,因此建议使用两个铯原子钟)。ePRTC不是仅仅锁定到一个原子钟,而是在适当加权的时标集合中主动无缝锁定到两个时钟。例如,如果一个原子钟的性能下降,则ePRTC将平稳地降低其权重,以避免影响传出时间和频率服务。
要强调的一点是,高质量ePRTC需要通过适当的智能化来实现集合和自主时标功能,同时还要善于与高质量原子钟“耦合”。对于保持功能尤其如此。 质量的铯原子钟将为ePRTC系统本身提供 的保持性能。
设置和调试要求
成功构建优化的时标系统包括成功构建铯原子钟和ePRTC系统,需要格外小心地进行设置和调试。ITU标准规定了需要执行的调试验证,包括:
· ePRTC已完全锁定到传入的参考时间信号,并且未在预热过程中运行
· 参考路径中没有故障或设备错误,包括但不限于天线故障
· 环境条件处于设备规定的工作限值内。
· 设备的固定偏移经过适当的调试和校准,例如天线电缆长度、电缆放大器和接收器延时以及参考时间信号(例如,GNSS信号在相关运营机构确定的限值内运行)。
· 如果参考时间信号是通过GNSS等无线电系统运行的,则必须将多路反射和来自其他本地发射的干扰(例如人为干扰)尽可能减小到可接受的水平。
· 没有极端的传播异常,例如严重的雷暴或太阳耀斑。
· 根据原子钟,时间参考为GNSS,频率参考为1 pps/10 MHz。常见的错误是将GNSS的时间和频率设置为 优先级,这会使原子钟成为经典备用角色,从而无法发挥ePRTC的运行优势。
在考虑了这些调试要求后,选择ePRTC解决方案的下一步是系统验证和测试。
验证和测试
测试和验证分为3个主要阶段:
1. 21天“学习”期
2. 14天“保持”期
3. 7天“恢复”期
21天的学习期有助于以超高 确定ePRTC时标的UTC校准校正参数和本地铯原子钟的频率偏移估值。GNSS子系统 本地时标相对于UTC的一组连续时间误差测量结果,以便可以缓慢地调整本地时标速率。这段为期三周的学习期( 阶段)有助于验证ePRTC是否确实符合ITU-T的时间 规范。
图1——21天后显示符合ITU-T G.8272.1时间 标准
在14天的保持期内,GNSS信号断开,ePRTC必须验证其是否可以在14天的保持期内保持100 ns。铯原子钟越出色,此测试的性能就越高。
如图2所示,经过测试的ePRTC在几乎整个中断期内都将时间误差性能限制保持在100 ns标准内,并维持了25 ns的时钟类。使用高性能铯原子钟可提供比标准要求高四倍的保持性能。
图2. 在Microchip的TimeProvider 4100的ePRTC测试过程中,经过14天的中断期(+1天的恢复期)后,时间误差完全处于100 ns要求(42 ns)之内。重新连接GNSS时返回零
恢复期是为了验证将GNSS重新连接到ePRTC单元时,一切是否恢复正常。目标是验证能否成功重新收敛和重新建立100%的正常时标保护操作,如图3所示。
图3. 与G.8272.1标准相比,后保持期与主UTC-NIST参考的时间偏差(TDEV)
—— 显示7天后保持期的结果
保持“油表”的重要性
“油表”特别有用,因为它可以帮助移动运营商充分了解ePRTC保持功能能够保持100 ns (相对于UTC)的时间。标准要求是14天。
【不支持emf图片】
图4——保持“油表”(拉出GNSS天线之前)的时间估值为40天(远优于要求的14天)
ePRTC标准满足5G对保证交付一致、高 的相位和时间的要求。它实现此功能的难易程度取决于是否作为完整解决方案的一部分正确部署,包括已充分验证、测试和调试的正确时钟和相关系统。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。