降额等级描述
降额等级的划分通常元器件有一个降额范围。在此范围内,元器件工作应力的降低对其失效率的下降有显著的改善,设备的设计易于实现,且不必在设备的重量、体积、成本方面付出大的代价。应按设备可靠性要求、设计的成熟性、维修费用和难易程度、安全性要求,以及对设备重量和尺寸的限制等 因素,综合权衡确定其降额等级。
在降额范围内推荐采用三个降额等级。
a) I 级降额I 级降额是的降额,对元器件使用可靠性的改善。超过它的更大降额,通常对元器件可靠性的提高有限,且可能使设备设计难以实现。I 级降额适用于下述情况:设备的失效将导致人员伤亡或装备与保障设施的严重破坏;
对设备有高可靠性要求,且采用新技术、新工艺的设计;由于费用和技术原因,设备失效后无法或不宜维修;系统对设备的尺寸、重量有苛刻的限制。
b)II 级降额II 级降额是中等降额,对元器件使用可靠性有明显改善。II 级降额在设计上较 I 级降额易于实现。II 级降额适用于下述情况:设备的失效将可能引起装备与保障设施的损坏;有高可靠性要求,且采用了某些专门的设计;需支付较高的维修费用。
c) III 级降额III 级降额是的降额,对元器件使用可靠性改善的相对效益,但可靠性改善的效果不如 I 级和 II 级降额。III 级降额在设计上易实现。III 级降额适用于下述情况:设备失效不会造成人员和设施的伤亡和破坏;设备采用成熟的标准设计。
电阻器降额规范 稳态功率与瞬态功率
稳态功率
功率降额是在相应的工作温度下的降额,即是在元件符合曲线所规定环境温度下的功率的进一步降额,采用P=V?/R公式进行计算。
为了保证电阻器的正常工作,各种型号的电阻厂家都通过试验确定了相应的降功率曲线,因此在使用过程中,必须严格按照降功率曲线使用电阻器。
当环境温度定于额定温度时(T<Ts)可以施加60%额定功率,不需要考虑温度降额。当环境温度高于额定温度的时候,需要考虑温度降额,应该进一步降额功耗使用,
P=PR(0.6+(Ts-T)/(Tmax-Ts))
PR是额定功耗;
T是环境温度;
Tmax是零功耗时环境温度。
瞬态功耗
不同厂家,电阻脉冲功耗和稳态功率的转换曲线不同,具体应用时,要查询转换缺陷,将瞬态功率转换为稳态功率,然后在此基础上降额。
厂家额定环境温度为70℃,低于这个温度的时候,直接按照60%进行降额。当超过这个温度的时候,额定曲线是一个斜线。降额曲线也按照,温度的降额为121℃,然后绘制一条红色的斜线,按照斜线进行降额。
瞬态降额 只要时间足够短,电阻可以承受比额定功率大得多的瞬态功率。要参考厂家资料中的过负荷电压参数,再在此基础上降额。
瞬态功耗,又要按照单脉冲和多脉冲,分别进行讨论和分析。
单脉冲:
多脉冲:
1、合成型电阻器
1.1 概述
合成型电阻器件体积小,过负荷能力强,但它们的阻值稳定性差,热和电流噪声大,电压与温度系数较大。
合成型电阻器的主要降额参数是环境温度、功率和电压。
1.2 应用指南
a) 合成型电阻为负温度和负电压系数,易于烧坏。因此限制其电压是必须的。
b) 在潮湿环境下使用的合成型电阻器,不宜过度降额。否则潮气不能挥发将可能使
电阻器变质失效。
c) 热点温度过高可能导致合成型电阻器内部的电阻材料性损伤。
d) 为保证电路长期工作的可靠性, 电路设计应允许合成型电阻器有±15%的阻值容差。
1.3 降额准则
合成型电阻器的降额准则见下表。
合成型电阻器降额准则
2、薄膜型电阻器
2.1 概述
薄膜型电阻器按其结构,主要有金属氧化膜电阻器和金属膜电阻器两种。
薄膜型电阻器的高频特性好,电流噪声和非线性较小,阻值范围宽,温度系数小,性能稳定,是使用广泛的一类电阻器。
薄膜型电阻器降额的主要参数是电压、功率和环境温度。
2.2 应用指南
a) 各种金属氧化膜电阻器在高频工作情况下, 阻值均会下降 (见元件相关详细规范) 。
b) 为保证电路长期工作的可靠性,设计应允许薄膜型电阻器有一定的阻值容差,金属膜电阻器为±2%,金属氧化膜电阻器为±4%,碳膜电阻器为±15%。
2.3 降额准则
3、电阻网络
3.1 概述
电阻网络装配密度高,各元件间的匹配性能和跟踪温度系数好,对时间、温度的稳定性好。
电阻网络降额的主要参数是功率、电压和环境温度。
3.2 应用指南
为保证电路长期工作的可靠性,设计中应允许电阻网络有±2%的阻值容差。
3.3 降额准则
4、线绕电阻器
4.1 概述
线绕电阻器分精密型与功率型。线绕电阻器具有可靠性高、稳定性好、无非线性,以及电流噪声、温度和电压系数小的优点。
线绕电阻器降额的主要参数是功率、电压和环境温度。
4.2 应用指南
a) 在 II 级降额应用条件下,不采用绕线直径小于 0.025mm 的电阻器。
b) 功率型线绕电阻器可以经受比稳态工作电压高得多的脉冲电压, 但在使用中应作相应的降额。见附录 D(参考件)。
c) 功率型线绕电阻器的额定功率与电阻器底部散热面积有关, 在降额设计中应考虑此因素。见附录 E(参考件)。
d) 为保证电路长期工作的可靠性,设计应允许线绕电阻器有一定的阻值容差:精密型线绕电阻器为 ±0.4%;功率型线绕电阻器为 ±1.5%。
4.3 降额准则
5、 热敏电阻器
5.1 概述
敏电阻器具有很高的电阻—温度系数(正或负的)。
敏电阻器降额的主要参数是额定功率和环境温度。
5.6.5.2 应用指南
a) 负温度系数型热敏电阻器,应采用限流电阻器,防止元件热失控。
b) 任何情况下,即使是短时间也不允许超过电阻器额定电流和功率。
c) 为保证电路长期可靠性的工作,设计应允许热敏电阻器阻值有±5%的容差。
4.3 降额准则
磁性器件的降额规范
部件类型
降额参数
降额要求
严酷条件
一般条件
音频变压器
功率变压器
脉冲变压器
脉冲电流(%额定值)
脉冲电压(%额定值)
热点温度(℃)
90%
90%
Tmax-25℃
<100%
<100%
Tmax-25℃
射频线圈
电感
直流电流(%额定值)
热点温度(℃)
90%
Tmax-25℃
<100%
Tmax-25℃
电感
1 概述
电感元件包括各种线圈和变压器。电感元件降额的主要参数是工作电流、热点温度。
5.9.2 应用指南
a) 为防止绝缘击穿,线圈的绕组电压应维持在额定值。
b) 工作在低于其设计频率范围的电感元件会产生过热和可能的磁饱和, 使元件的工作寿命缩短,甚至导致线圈绝缘破坏。
功率电感器的额定电流有两种,它们之间的差异是什么呢?
两种额定电流
功率电感器的额定电流有"基于自我温度上升的额定电流"和"基于电感值的变化率的额定电流"两种决定方法,分别具有重要的意义。"基于自我温度上升的额定电流"是以元件的发热量为指标的额定电流规定,超出该范围使用时可能会导致元件破损及组件故障。
与此同时,"基于电感值的变化率的额定电流"是以电感值的下降程度为指标的额定电流规定,超出该范围使用时可能会由于纹波电流的增加而导致IC控制不稳定。此外,根据电感器的磁路构造的不同,磁饱和的倾向(即电感值的下降倾向)有所不同。图1是表示不同磁路构造所导致的电感值的变化的示意图。对于开磁路类型,随着直流电流的增加,到规定电流值为止呈现比较平坦的电感值,但以规定电流值为境界电感值急剧下降。相反,闭磁路类型随着直流电流的增加,透磁率的数值逐渐减少,因此电感值缓慢下降。
功率电感规格书中对额定电流参数仅注明介质的饱和电流Isat值。
Isat与rms的区别
Isat与Irms是我们工程人员常常会碰到的技术术语,但因有些客户的问题,时常将两者混淆,造成工程技术上的错误。Isat与Irms两者分别表示什么,中文又是指什么? Isat与Irms两者如何定义,它们与那些因素有关?我们在电感设计时,如何定义?
Isat:指磁介质的饱和电流,在下图B-H曲线中,是指磁介质达到Bm对应的Hm所需的DC电流量的大小,对于电感,即电感下降到一定比例后的电流大小,如SRI1207-4R7M产品,电感下跌20%的电流为8.4A,则Isat=8.4A。Isat计算公式如下:
设截面积为S、长为l,磁导率为μ的铁环上,绕以紧密的线圈N匝,线圈中通过的电流为I。則依磁路定律:
Hl/0.4π=NI=0.7958Hl
对于同一材质及呎吋的铁芯Hl依B-H曲线进行变化,但在同一斜率下,Hl是不变的,因此:
N1*I1=Hl/0.4π=N2*I2
即:
N1/N2=I2/I1
Irms:指电感产品的应用额定电流,也称为温升电流,即产品应用时,表面达到一定温度时所对应的DC电流。
以下是以2520系列中的4.7uH叠层功率电感为例对比说明业界目前对电感器额定电流Irat、饱和电流Isat以及温升电流Irms标识状况。
叠层功率电感(铁氧体大电流电感)参数比对表
现状会误导工程师选型,产生隐患;
目前有相当部分叠层功率电感生产厂家对其产品额定电流规格都是沿用传统信号滤波处理用叠层电感额定电流标准来定义,其根据电感的温升电流值来定义其额定工作电流。这种情况下产品设计工程师往往会按照传统功率电感选型经验并根据供应商电感规格书上定义的额定电流值来衡量其实际电路中的额定工作电流,这样一来很可能会导致因电感饱和电流低于电路的实际工作电流,会存在如下隐患:
A). 电感实际工作时因电流过大导致饱和,引起电感量下降幅度过大造成电流纹波超出后级电路允许规格范围造成电路干扰,从而无法正常工作甚至损坏;
B).电路中实际工作电流超过电感的饱和电流有可能会因电感饱和电感量下降产生机械或电子噪音;
C).电路中实际工作电流超过电感的饱和电流会导致因电感饱和,其电感量下降引起电源带负载时输出电压&电流不稳定,造成其它单元电路系统死机等不稳定异常情形;
D).电感额定电流(包括饱和和温升电流)选择余量不足会导致其工作时表面温度过高、整机效率降低、加速电感本身或整机老化使其寿命缩短.
降额选型时,我们选择两个额定电流中小的那个进行降额。
3 降额准则
电感元件的热点温度额定值与线圈线组的绝缘性能、工作电流、瞬态初始电流及介质
耐压有关。
注:
1) THS 为额定热点温度。
2)只适用于扼流圈。
磁珠主要用于EMI差模噪声抑制,他的直流阻抗很小,在高频下却有较高阻抗,一般说的600R是指100MHZ测试频率下的阻抗值。选择磁珠应考虑两方面:一是电路中噪声干扰的情况,二是需要通过的电流大小。要大概了解噪声的频率、强度,不同的磁珠的频率阻抗曲线是不同的,要选在噪声中心频率磁珠阻抗较高的那种。噪声干扰大的要选阻抗高一点的,但并不是阻抗越高越好,因为阻抗越高DCR也越高,对有用信号的衰减也越大。但一般也没有很明确的计算和选择的标准,主要看实际使用的效果,120R-600R之间都很常用。然后要看通过电流大小,如果用在电源线部分则要选额定电流较大的型号,用在信号线部分则一般额定电流要求不高。另外磁珠一般是阻抗越大额定电流越小。
磁珠的选择要根据实际情况来进行。比如对于3.3V、300mA电源,要求3.3V不能低于3.0V,那么磁珠的直流电阻DCR就应该小于1R,这种情况一般选择0.5R,放置参数漂移。对噪声的抑止能力来说,如果要求对于100MHZ的、300mVpp的噪声,经过磁珠以后达到50mVpp的水平,假设负载为45欧姆,那么就应该选择225R@100Mhz,DCR<1R的磁珠
楼上的,45欧的阻抗是怎么估计出来的?225R又是怎么算出来的?
(45ohm/50mV)*250mV=225ohm
首先你要知道你要滤除的噪声的频段,然后选一个在该频段选一个合适的阻抗(实际的可以通过仿真得出大概要多大,仿真模型可以向厂商要),第二步确定该电路通过的电流,电路流过的电流确定了也意味着你要选多大额定电流的磁珠,接下来是确定磁珠的DCR(直流阻抗),根据后电路电压供电的范围就能算出允许的磁珠的DCR的范围。封装的话自己看着办了。提醒一下啊,磁珠的阻抗在你加电压后和规格书上的有点差别
要正确的选择磁珠,必须注意以下几点:
1、不需要的信号的频率范围为多少;
2、噪声源是谁;
3、需要多大的噪声衰减;
4、环境条件是什么(温度,直流电压,结构强度);
5、电路和负载阻抗是多少;
6、是否有空间在PCB板上放置磁珠;前三条通过观察厂家提供的阻抗频率曲线就可以判断。
在阻抗曲线中三条曲线都非常重要,即电阻,感抗和总阻抗。总阻抗通过ZR22πfL()2+:=fL来描述。典型的阻抗曲线如下图所示:通过这一曲线,选择在希望衰减噪声的频率范围内具有阻抗而在低频和直流下信号衰减尽量小的磁珠型号。片式磁珠在过大的直流电压下,阻抗特性会受到影响,另外,如果工作温升过高,或者外部磁场过大,磁珠的阻抗都会受到不利的影响。使用片式磁珠和片式电感的原因:是使用片式磁珠还是片式电感主要还在于应用。在谐振电路中需要使用片式电感。而需要消除不需要的EMI噪声时,使用片式磁珠是的选择。片式磁珠和片式电感的应用场合:片式电感:射频(RF)和无线通讯,信息技术设备,雷达检波器,汽车电子,蜂窝电话,寻呼机,音频设备,PDAs(个人数字助理),无线遥控系统以及低压供电模块等。片式磁珠:时钟发生电路,模拟电路和数字电路之间的滤波,I/O输入/输出内部连接器(比如串口,并口,键盘,鼠标,长途电信,本地局域网),射频(RF)电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机(VCRS),电视系统和手提电话中的EMI噪声抑止。在产品数字电路EMC设计过程中,我们常常会使用到磁珠,那么磁珠滤波的原理以及如何使用呢?
铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容。铁氧体材料通常在高频情况下应用,因为在低频时他们主要程电感特性,使得线上的损耗很小。在高频情况下,他们主要呈电抗特性比并且随频率改变。实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。实际上,铁氧体较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由他的电阻特性决定的。
铁氧体磁珠与普通的电感相比具有更好的高频滤波特性。铁氧体在高频时呈现电阻性,相当于品质因数很低的电感器,所以能在相当宽的频率范围内保持较高的阻抗,从而提高高频滤波效能。
在低频段,阻抗由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,L起主要作用,电磁干扰被反射而受到抑制;并且这时磁芯的损耗较小,整个器件是一个低损耗、高Q特性的电感,这种电感容易造成谐振因此在低频段,有时可能出现使用铁氧体磁珠后干扰增强的现象。
在高频段,阻抗由电阻成分构成,随着频率升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小 但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式耗散掉。
铁氧体抑制元件广泛应用于印制电路板、电源线和数据线上。如在印制板的电源线入口端加上铁氧体抑制元件,就可以滤除高频干扰。铁氧体磁环或磁珠专用于抑制信号线、电源线上的高频干扰和尖峰干扰,它也具有吸收静电放电脉冲干扰的能力。
使用片式磁珠还是片式电感主要还在于实际应用场合。在谐振电路中需要使用片式电感。而需要消除不需要的EMI噪声时,使用片式磁珠是的选择。片式磁珠和片式电感的应用场合:片式电感:射频(RF)和无线通讯,信息技术设备,雷达检波器,汽车电子,蜂窝电话,寻呼机,音频设备,,无线遥控系统以及低压供电模块等。片式磁珠:时钟发生电路,模拟电路和数字电路之间的滤波,I/O输入/输出内部连接器(比如串口,并口,键盘,鼠标,长途电信,本地局域网),射频(RF)电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机(VCRS),电视系统和手提电话中的EMI噪声抑止。
磁珠的单位是欧姆,因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆。磁珠的DATASHEET上一般会提供频率和阻抗的特性曲线图,一般以100MHz为标准,比如是在100MHz频率的时候磁珠的阻抗相当于1000欧姆。针对我们所要滤波的频段需要选取磁珠阻抗越大越好,通常情况下选取600欧姆阻抗以上的。
另外选择磁珠时需要注意磁珠的通流量,一般需要降额80%处理,用在电源电路时要考虑直流阻抗对压降影响。
电容的降额规范
非固体铝电解电容器降额规范
器件应力考核点:正向电压(浪涌电压);反向电压;纹波电流;预期寿命
1 器件简述
非固体铝电解电容器的工作介质是在金属铝极箔表面用电解法生成的一层金属氧化物──三氧化二铝(Al2O3),之所以称为非固体,是因为铝电容器的负极是由液体(也称作电解液)充当的。铝电解电容器的结构图如下:
铝电解电容器结构图
从结构图可以看到,电容器的芯子是由一层正极箔,一层间隔纸(电解液就浸在间隔纸上,故也称作电解纸),一层负极箔,再一层间隔纸卷绕而成,正负极箔分别铆接上引线以连接到电路中。电容器芯子用铝外壳和橡胶塞密封后,再套上热缩套管,就构成了完整的电容器,热缩套管上已印刷了用以识别电容器的商标、额定电压、标准容量、容量误差、工作温度、厂家型号、负极标志等内容。
铝电解电容器在电路中主要起滤波、隔直、稳压的作用,实际制造出来的电容器在电路中使用时并不是理想的元件,含有ESR和ESL,其等效电路图如下:
ESR的存在是电容器工作时发热的主要原因,它不但决定了流过电容器的纹波电流的大小,更是影响电容器实际使用寿命的重要因素。铝电解电容器的芯子是卷绕而成的,所以有ESL的存在,它决定了铝电解电容器工作频率不能太高,否则就没有滤波效果,铝电解的工作频率一般在几十Hz~~100KHz。铝电解电容器是有极性的,在应用时绝不能反接。
2 器件常见失效模式及降额点选取说明
相对于其它阻容器件来讲,铝电解电容器因含有液体作负极材料,所以失效率相对较高,且有严格的寿命要求,这在设计选型时需考虑。铝电解常见的失效模式有:短路,开路,电参数性能劣化,防爆阀开裂,漏液。
从铝电解电容器应用过程中的失效原因看,主要有以下三种:
◆电应力引起的失效:
·过电压:电介质击穿,严重时会起火。
·反压现象:严重时会爆炸起火。
·纹波电流过大:内部温升过高,介质遭到破坏,电解液干涸,寿命缩短。
◆ 热应力引起的失效
·过高的环境温度,导致材料性能的蜕化或劣化,电解液挥发,寿命缩短。
·不适当的焊接热冲击。
◆ 机械应力引起的失效
·引脚间距与PCB板间距不匹配造成外应力损伤。
·冲击和震动造成的机械应力损伤。
·单板加工时电容内部受伤。
综上所述,对铝电解电容器降额考核点主要有4个方面:正向电压(浪涌电压);反向电压;纹波电流;预期寿命。
3 器件应力限制
3.1 正向电压;浪涌电压
在I、II工作区坏应力情况下,正向电压(I区),浪涌电压(II区)降额必须满足下表:
应力考核点
产品工作区
B级产品
A级产品
正向电压
I工作区坏情况
90%
90%
浪涌电压
II工作区坏情况
100%
100%
说明:1. 对于450V电压档次的铝电解,考虑到电压选型及成本、尺寸问题,在应用于PFC电路时,I工作区电压降额允许95%。
2. 计算电容器寿命时,应考核工作电压对寿命的影响,电压降额对寿命的影响系数如下:
电压降额
KVOLTAGE
> 90%
0.8
90%~80%
0.9
< 80%
1
寿命计算的具体方法见附件:《非固体铝电解电容器应力降额操作指导书》。
3.2 反向电压
在I、II工作区坏应力情况下,施加在铝电解电容两端的反向电压必须满足下表:
应力考核点
产品工作区
B级产品
A极产品
反向电压
I工作区坏情况
不允许施加反向电压
II工作区坏情况
≤0.5V
3.3 纹波电流
允许实际工作纹波电流值超过手册规定的额定值,但必须限制在下表规定的范围内,同时应考核纹波电流对寿命的影响。即在满足寿命的前提下,允许纹波电流超过额定值使用。具体规定见下表:
应用场合
电容器分类
应力考核点
产品工作区
B级产品
A级产品
滤波
SCREW-TYPE
纹波电流
I工作区
坏情况
220%额定值
200%额定值
SNAP-IN 105℃
220%额定值
200%额定值
SNAP-IN 85℃
200%额定值
180%额定值
RADIAL-LEAD
150%额定值
130%额定值
其它场合
100%额定值
100%额定值
说明:1.纹波电流额定值,是指厂家手册中规定的电容在工作环境温度下,频率为120Hz时的纹波电流有效值,如实际应用中有多个频率下的纹波电流,可转换成120Hz下的等效值。
2.在实际考核纹波电流时,如果:
2.2倍额定纹波电流≥实测纹波电流≥额定纹波电流, 加上有其它发热器件或强迫风冷影响,不能仅以纹波电流来计算温升,需测试电容器的芯子温升来考核电容器的寿命。
3.如果有多个电容器并联使用,测试应力严重的那个电容的纹波电流作为考核依据。
3.4 预期寿命
当设备在规定的工作环境温度下满载运行,同时满足其他正常条件下(如按手册规定的安装方式、正常的输入、输出范围等),铝电解电容的预期寿命必须大于下列值:
应力考核点
B级产品
A级产品
I区坏情况预期寿命
≥1年
≥2年
额定情况预期寿命
≥产品规格书规定值
注:1年=8760小时
铝电解电容的预期寿命主要与电容的工作环境温度、纹波电流(纹波电流发热引起的温升)以及工作电压有关。
钽电容降额规范
MnO2钽电容
耐压
稳态
50%
瞬态
55%
环境温度
稳态
≤Tmax-20℃
瞬态
反向电压
稳态
禁止
瞬态
≤2%额定电压
电压变化率
稳态
≤15V/ms
瞬态
纹波电路
环境温度<85℃
100%
环境温度<95℃
80%
环境温度<105℃
60%
Polymer钽电容
耐压(额定小于10V)
稳态
85%
瞬态
90%
耐压(额定10~25V)
稳态
70%
瞬态
80%
耐压(额定25以上)
稳态
60%
瞬态
80%
环境温度
稳态
≤Tmax-10℃
瞬态
≤Tmax
反向电压
稳态
禁止
瞬态
≤2%额定电压
电压变化率
稳态
≤15V/ms
瞬态
纹波电路
环境温度<85℃
100%
环境温度<95℃
85%
环境温度<105℃
70%
电容类型
降额参数
电压(%额定值)
温度(℃)
反向电压
严酷
一般
严酷
一般
固定纸/塑料薄膜
60%
70%
Tmax-10℃
Tmax-10℃
固定金属化薄膜
60%
70%
Tmax-10℃
Tmax-10℃
固定陶瓷型
60%
70%
Tmax-10℃
Tmax-10℃
固定铝电解电容
70%
80%
Tmax-20℃
Tmax-20℃
可变电容器
60%
70%
Tmax-10℃
Tmax-10℃
降额设计是使电子元器件的工作应力适当低于其规定的额定值,从而达到降低基本故障率,保证系统可靠性的目的。降额设计是电子产品可靠性设计中的常用的方法。
不同的电子元器件所要考虑的应力因素是不一样的,有的是电压,有的是电流,有的是温度,有的是频率,有的是振动等等。
对电容的耐压及频率特性,电阻的功率,电感的电流及频率特性,二极管、三极管、可控硅、运放、驱动器、门电路等器件的结电流、结温或扇出系数,电源的开关和主供电源线缆的耐电压/电流和耐温性能,信号线缆的频率特性,还有散热器、接插件、模块电源等器件的使用要求进行降额设计。通常,根据降额幅度的大小可分为一、二、三级降额,降额((实际承受应力)/(器件额定应力) < 50%的降额)在技术设计上容易实现,降额的效果也,但存在成本过高的问题;二级降额(70%左右的降额)在技术设计上也比较容易实现,降额的效果也很好,并且成本适中;三级降额在技术实现上要仔细推敲,必要时要通过系统设计采取一些补偿措施,才能保证降额效果的实现,有一定难度,但三级降额的成本。一般说来,建议使用二级降额设计方法,在保证降额设计取得良好效果的同时,技术实现难度和成本都适中。对于涉及到频率特性的器件的降额要谨慎处理。
部分,我们已经发布了电阻、电容、电感的降额规范;第二部分,包含:二极管、三极管、MOS管、光电半导体(发光二极管)
二极管降额规范
二极管按功能可分为普通、开关、稳压等类型二极管;按工作频率可分为低频、高频
二极管;按耗散功率(或电流)可分为小功率(小电流)大功率(大电流)二极管。所有
二极管需要降额的参数是基本相同的。
高温是对二极管破坏性强的应力,所以对二极管的功率和结温必须进行降额;电压
击穿是导致二极管失效的另一主要因素,所以二极管的电压也需降额。
器件
降额参数
降额-稳态
降额-瞬态
快速恢复二极管
快速整流二极管
肖特基二极管
开关二极管
桥堆
正向电流IF
90%
90%
非重复正向浪涌电流IFSM
60%
60%
反向电压VR
80%
90%
PIN
变容二极管
功率
90%
90%
反向电压VR
80%
90%
稳压二极管
功率
90%
90%
二极管结温的降额,根据二极管相关详细规范给出的结温T jmax而定,降额后的结温见表
注:
1、所有降额是在结温降额满足的情况下的要求。
2、参数额定值需要从datasheet中查询
3、如果参数额定值与温度、时间无关,可直接降额
4、如果参数额定值与温度有关,则选取结温时的参数进行降额
5、如果与时间有关,则通过查找datasheet对应的时间和温度曲线,根据实际情况进行降额。
三极管MOS管降额规范
1 概述
晶体管按结构可分为双极型晶体管、场效应晶体管、单结晶体管等类型;按工作频率可分为低频晶体管和高频晶体管;按耗散功率可分为小功率晶体管和大功率晶体管(简称功率晶体管)。所有晶体管的降额参数是基本相同的,它们是电压、电流和功率。但对MOS 型场效应晶体管、功率晶体管的降额又有特殊的要求。
高温是对晶体管破坏性强的应力,因此晶体管的功耗和结温须进行降额;电压击穿是导致晶体管失效的另一主要因素,所以其电压须降额。功率晶体管有二次击穿的现象,因此要对它的安全工作区进行降额。
2、注意事项
1 功率晶体管在遭受由于多次开关过程所致的温度变化冲击后会产生“热疲劳”失效。使用时要根据功率晶体管的相关详细规范要求限制壳温的变化值。
2 预计的瞬间电压峰值和工作电压峰值之和不得超过降额电压的限定值。
3 为保证电路长期可靠的工作,设计应允许晶体管主要参数的设计容差为:
电流放大系数:±15%(适用于已经筛选的晶体管)±30%(适用于未经筛选的晶体管)
漏电流: +200%
开关时间: +20%
饱和压降: +15%
器件
降额参数
降额-稳态
降额-瞬态
三极管
功率
90%
90%
击穿电压VCE、VEB、VCB
80%
90%
结温
MOS管
栅源电压VGSmax
85%
85%
Vds平台电压
80%
90%
Vds尖峰电压
95%
100%
漏极电流ID
有效值70%
有效值70%
晶体管结温的降额。
晶体管结温的降额,根据晶体管相关详细规范给出的结温Tjmax而定,降额后的结温见表
功率晶体管安全工作区的降额
半导体光电器件降额规范
1 概述
半导体光电器件主要有三类:发光、光敏器件或两者的结合。发光类器件主要有发光
二极管、发光数码管;光敏类器件有光敏二极管、光敏三极管;常用的光电组合器件是光
电耦合器,它由发光二极管和光敏三极管组成。
高结温和结点高电压是半导体光电器件主要的破坏性应力,结温受结点电流或功率的
影响,所以对半导体光电器件的结温、电流或功率均需进行降额。
2 应用指南
1)发光二极管驱动电路必须限制电流,通常用一个串联的电阻来实现。
2)一般不应采用经半波或全波整流的交流正弦波电流作为发光二极管的驱动电流。
如果确要使用,则不允许其电流峰值超过发光二极管的直流允许值。
3)在整个寿命期内,驱动电路应允许光电耦合器电流传输比在降低 15%的情况下仍
能正常工作。
3 降额准则
半导体光电器件电压、电流见表。其中:
a) 电压从额定值降额;
b) 电流从额定值降额;
结温降额根据光电器件相关详细规范给出的结温 T jmax 而定。
TVS器件降额规范 器件应力考核点:吸收电流IPM,吸收功率PPM,TVS平均功率PAV,钳位电压VC,
被保护器件耐压VRA
1 产品保修期等级及产品I、II工作区、产品额定工作点简要说明
产品保修期等级:分为A、B两个等级,A级指保修期为2~3年,B级指保修期为1~2年。
I、II工作区:
产品的I工作区指产品“正常”工作区域,即产品手册所规定的输入/输出(环境温度/电压/电流/功率等)所允许变化的区域,是器件长期工作的区域。该区中的存在某一点(或区域),对应器件某项参数的应力,称为I区该项应力的坏情况;
II工作区指产品“异常”工作区域,即在开/关机、输入过/欠压保护、输出过压/过流保护、输入/负载跳变、风扇故障停转等“异常”工作情况器件短时间工作区域。在该区域中的某一点对应器件某项参数的应力,称为II区该项应力坏情况。
2 器件应力限制
2.1 TVS吸收电流IPM
在正常使用条件及坏应力情况下,TVS吸收的吸收电流降额必须满足下表:
应力参考点
产品工作区域
B 级产品
A 级产品
吸收电流IPM
I、II工作区坏情况
<90%相应壳温下的脉冲电流IP(TAU)
<85%相应壳温下的脉冲电流IP(TAU)
上表中IP(TAU)为TVS的峰值电流对应实际壳温下的温度降额值,
当壳温TAU≤25℃时:
IP(TAU)=IPPM IPPM为手册中规定TAU=25℃时的峰值电流
当壳温TA>25℃时:
IP(TAU)=IPPM×[(TJM-TA)/(TJM-25)]
TVS吸收电流降额值:DIP=IPM/IP(TAU)*100%
如TVS器件并联使用,则电流降额在上述基础上,再降额10%。
2.2 TVS吸收功率PPM
在正常使用条件及坏应力情况下,TVS吸收的瞬时功率与额定功率的降额必须满足下表:
应力参考点
产品工作区域
B 级产品
A 级产品
吸收功率PPM
I、II工作区坏情况
<80%相应壳温下的功率PP(TAU)
<70%相应壳温下的功率PP(TAU)
上表中PP(TAU)为TVS的额定峰值功率对应实际壳温TAU下的允许功率,
当壳温TAU≤25℃时:
PP(TAU)=PPPM PPPM为手册中规定TAU=25℃时的峰值吸收功率
当壳温TAU>25℃时:
PP(TAU)=PPPM*[(TJM -TAU)/(TJM -25)]
TVS吸收功率降额值:DP=PPM/PP(TAU)*100%
如TVS串联或并联使用,则功率降额在上述降额的基础上,再降额10%。
2.3 TVS平均功率PAV
如TVS工作在连续状态或连续脉冲状态,则功率降额如下:
应力参考点
产品工作区域
B 级产品
A 级产品
连续功耗PAV
I、II工作区坏情况
<80%相应壳温下的平均功率PM(TAU)
<70%相应壳温下的平均功率PM(TAU)
上表中PM(TAU)为TVS的平均功率对应实际壳温TAU下的温度降额值,
当壳温TAU≤25℃时:
PM(TAU)=PM(AV) PM(AV)为手册中规定TAU=25℃时的额定平均功率
当壳温TAU>25℃时:
PM(TAU)=PM(AV)*[(TJM -TAU)/(TJM -25)]
TVS平均功率降额值:DPA=PAV/PM(TAU)*100%
2.4 TVS钳位电压VC
TVS在实际电路中的钳位电压可以直接测出,也可以根据TVS吸收的电流计算得出:
VC=VBR+(VCM-VBR)* IPM/IPPM
VCM为TVS额定吸收电流条件下的钳位电压,VBR为TVS击穿电压,IPPM为额定吸收电流,IPM为实际吸收的电流。
2.5 被保护器件耐压VRA
在正常使用及坏应力情况下,被保护器件的耐压VRA应大于TVS的钳位电压,TVS的钳位电压与被保护器件的耐压的降额关系必须满足下表:
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。