目前常见的开关稳压器拓扑之一是降压型开关稳压器。降压稳压器IC通常采用内置控制器和集成FET进行降压转换。不仅如此,降压稳压器IC还可应用到各类设计中,如反相电源、双极性电源以及单个或多个独立电压输出的隔离电源。本文介绍了各种降压稳压器的设计,阐释它们的工作原理,并讨论实现这些设计需要考虑的实际因素。
采用降压稳压器IC的降压转换器
瑞萨电子ISL8541x系列降压稳压器IC具有集成的上管和下管FET、内部启动二极管和内部补偿,可限度地减少外部元件数量,实现非常小尺寸的整体解决方案。此外,该系列稳压器IC具有3V~40V的宽输入电压范围,可支持多节电池和各种稳压电压输出。本文将以ISL85410降压稳压器IC为例详细解释各种应用设计。
电源设计中,当所需电压低于系统中的可用电压时,则需要使用降压转换器。例如,采用12V电池作为输入电压的系统,需要输出5V、3.3V或1.2V电压,以便为微控制器、I / O、存储器和FPGA供电。通过有效地将高电压转换为低电压,降压转换器可延长系统内的电池寿命、减少散热并提高可靠性。图1为使用ISL85410降压稳压器IC的降压转换器的简化原理图。
图1. 降压转换器的简化原理图
输出电压与输入电压具有相同的极性,连续导通模式(CCM)中的电压转换率可表示为:
(1)其中D是占空比,范围从0到1,表示输出电压(VOUT)始终小于或等于输入电压(VIN)。
采用降压稳压器IC的反相电源
虽然电子系统通常使用正电压,但有时也需要使用负电压。在这种情况下,需要反相电源用正输入生成负电压。为满足这些应用需求,比较常见的解决方案之一是使用反相降压-升压转换器。
图2比较了降压转换器与反相降压-升压转换器的功率级,表明可以通过切换FET Q2和电感L1来获得反相降压-升压转换器。这种拓扑变化会产生不同的电压转换比和输出电压的反相极性:
(2)在反相降压-升压转换器中,输出电压幅度可以高于或低于输入电压,并且输出电压相对于输入电压源的接地是负的。
图2. 降压转换器和反相降压-升压转换器的功率级
反相降压-升压转换器可采用高度集成的降压稳压器IC实现。如图3所示,使用ISL85410降压稳压器的简化电路。将降压稳压器配置为反相降压-升压转换器时,需要注意两个重要区别。,输入电压的(VIN)返回(RTN)连接。图1所示的降压转换器,输入电压的RTN同时也是接地端(即降压调节器的AGND/PGND引脚),而在反相降压-升压转换器中输入电压的RTN和接地端不再相同。因此,在实现反相降压-升压转换器时,必须在VIN引脚和RTN(而非AGND/PGND引脚)上施加输入电压源。
第二,VIN引脚上的电压应力需参考AGND引脚。无论输出电压如何,降压转换器中的电压始终等于输入电压(VIN)。相比之下,反相降压 - 升压转换器中的VIN引脚必须能够承受输入电压和输出电压之和(V IN + V OUT)。例如,在将24V转换为-5V的设计中,VIN引脚上的电压应力为29V而不是24V。必须谨记VIN引脚上的电压应力不应超过IC数据表中规定的额定电压。
图3. 简化的反相降压-升压转换器
采用降压稳压器IC的双极性电源
许多应用,如运算放大器和数据采集系统,都需要双极性±5V或±12V电源。一种常见的方法是使用单个开关调节器以及耦合电感器(通常也称为变压器)来产生负电压和正电压输出。图4展示了如何使用降压转换器和反相降压-升压转换器来生成双极性电源。
如图4(a)所示,首先将ISL85410降压稳压器配置为调节正输出VOUT+的降压稳压器,然后通过增加额外的耦合绕组产生负输出VOUT-。若对正输出VOUT+就像在降压转换器中那样进行调节,则负输出VOUT-与VOUT+数值一样(简单起见,整流二极管D1的正向电压降被忽略),但具有相反的极性。
图4. 使用降压方法(a)或反相降压-升压方法(b)的双极电源简化原理图
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。