汽车天线系统结构、原理及应用指南

时间:2017-09-04

  电子通讯技术的发展,如今的,已经脱离了当年笔直的外观限制,“进化”出了各种不同的外形和功能,它们也不再局限于收听广播,而是涵盖了无线遥控、GPS以及4G上网等多种功能。随着5G时代的临近,各种新技术很可能彻底颠覆现有汽车驾驶概念,所有这些新技术,包括车对车通讯,汽车AI等等,都离不开汽车与外界的通讯,而作为这条通讯生命线的硬件基础--天线系统,其地位也将因此水涨船高。

  限于篇幅,本文只列举几款新型的汽车天线系统的结构和应用、简单原理,以及未来发展方向。力图在大家的脑海中,新建一个“汽车天线”文件夹。

  你以为天线是这样的:

  其实,天线可以是这样的:

“完美隐藏”的天线

  上图给大家看的,不是汽车后挡风玻璃,也不是电加热系统的金属丝,而是一款集成在后窗玻璃中的天线(),其中红色标注的部分是AM天线,蓝色是FM天线,绿色是FM/数字广播信号天线。

  如此汽车“天线”,有没有超出你的理解?

  这里的两个FM天线,组成了简单的多源天线系统,广播会自动选择接收效果好的天线的信号作为信号源,或者简单地将两个信号叠加,提高信号强度。这样的系统并不需要额外加装一个“天线”,而是截取电热金属丝的其中一部分来当天线直接使用,如此巧妙地构思达到了让整个系统“大隐隐于市”的效果。

  集成在玻璃中的天线首先由慕尼黑联邦大学教授Heinz Lindenmeier发明的,随后就变成了汽车天线行业的标准技术。为了规避汽车发动机和其他电子设备的干扰,大部分天线选择集成在后窗玻璃或者侧面玻璃中。

  如果上图中的天线还算有迹可寻。那下图所展示的集成天线可真就是“难觅行踪”了。

  各种“隐型版”天线:棕色为金属线即天线,整个结构可以粘贴在汽车的各种特定的位置: 诸如保险杠、定风翼的内侧,后车箱盖、车门内等等

  虽然这非常符合设计者的初衷——在不影响车辆造型的前提下,力求获得完美的信号接收效果。但在某种程度上,这样的设计削减了汽车天线系统的存在感,连看都看不见,谁又会主动关注这样的天线呢?当然,也有“小隐隐于野”的办法,这种天线可能大家都见过,就是所谓的鲨鱼鳍天线。

  上图中这款为宝马设计的鲨鱼鳍天线,和乐高非常类似,电路板是底盘,各种天线系统模块可以像积木一样添加上去,以配合不同车型对天线的要求。可选择的功能有:AM/FM(短竿)、数字广播/电视(DAB/TV)、GPS、卫星信号(SDARS)、远程控制(TS)、近距离无线信号交流(Car2X)、LTE等等,典型的看菜吃饭。

  这样的设计可能会带来一定的空间浪费,但其节省了大量单独开发的时间和开支,结构更加坚固,维护更加简单,也保留了汽车天线系统升级的可能性。另外一点,它位于车子后顶部,具有很高的识别度,方便刷存在感……

  逐本溯源,汽车天线系统是什么?

  看完了几款天线后,我们就要回归本质,聊一聊汽车天线系统到底是什么。

  首先说说天线,它的功能就是完成电路中的电信号与空间中的电磁信号的相互转化,使远隔万里的电子系统能够互相交流。更重要的是,和电缆不同,天线系统信息传递的两端可以自由移动,这完美契合了汽车这种交通工具的使用限定。

  汽车天线系统,到目前为止,依旧被称为车载接收系统(Automotive Reception System),因为其功能还集中在接收信号方面。空间中的电磁信号经由天线(Antenna)转化为电信号,再由放大器(Amplifier)调整信号强度,随后通过同轴电缆(Coaxial Cable),交由车载信息娱乐系统(Infotainment System)进行解码和后期处理。这也是这篇文章主要介绍的部分。

  必须强调的一点是,在天线这里不存在什么“兼听则明,偏听则暗”的说法,一种天线就应该固定接收一定频率范围内的电磁信号,因此天线就是通过选择性接收不同的信号频率。除了传统的AM/FM模拟广播信号,还有GPS、数字广播/电视信号(DAB)、远程控制(TS)、蓝牙(Bluetooth)、卫星信号(SDARS)、4G/5G、车对车通信(Car2Car/Car2X)等等,它们各自占据不同的频率段,如下图所示。

车载不同信号的频率段分布( Ropers, Fuba Automotive Electronics)

  AM模拟信号这个夕阳频率从153kHz到6.2MHz,德国等多个欧洲国家已经从今年1月1日起正式关闭了所有AM模拟信号电台,转而由AM数字信号代替;FM从87.5MHz到108MHz(日本为76MHz到95MHz);数字广播从174MHz到240MHz;GPS信号从1574.397MHz到1576.443MHz等等。

  大体上,电磁信号的频率越高,其在空间中传输信息的速率越快,但在传播时,折射反射衍射等对信号的干扰越大,发射需要的能耗也越大。所以,信号的频率并不能无限提升,这也是为什么现在许多厂商宣称的5G技术只能覆盖小到只有一个物流工厂范围的原因——为了提升数据交换速度(信号频率),信号的广度被牺牲了。

  而频率较低的信号的覆盖范围则要大得多,比如在德国,能收到波兰,甚至英国的AM模拟信号。

  以上也是广义的,天线系统的存在价值。

  汽车天线系统的工作原理

  汽车天线系统只是承担接收信号,控制信号强度的工作。此工作不涉及编码/解码(Modulation/Demodulation)或者模拟/数字信号的转换(AC/DC),所以,要介绍的天线系统原理,也只涉及如何接收信号,以及如何控制信号强度。

  “接收”

  从简单的理论上来说,当天线和空间中的某个电磁信号产生共振时,电磁信号会被“接收”为电信号,使下一步的信息提取成为可能,如下图。而此信号携带的信息不会丢失——即所谓的信号不失真——的前提,是天线的有效长度达到信号波长的4分之1。

  所以,根据不同信号的不同频率范围,我们可以大概估计出接收此信号的天线的短长度(波长=光速/频率,天线长度≈波长/4),比如数字广播信号天线的长度应该在31到43厘米之间;对于AM模拟信号,天线长度理论上应该在12到500米之间,但是,有谁见过半公里长的天线?更何况一辆汽车,如何装载这么长的天线?

  首先,在形状上来说,天线并不一定是笔直的一根杆子。能和目标信号共振的天线,形状五花八门,否则你以为现在的智能手机为什么都“没有”天线?

智能手机天线图(负责接收不同频率信号的各个天线段)

  其次,并不是说天线并不是只在完美共振的情况下才能接收信号,否则要是想听所有FM频道,岂不是就要得天线密集恐惧症?举个例子,FM标准天线为75厘米长,相当于100MHz信号波长的4分之1,但它被用作整个FM频率段(87.5至108MHz)的标准天线,可以接收FM频率段的所有信号。

  再次,也是重要的,天线的有效长度并不永远受制于其物理长度。我们平时看到的长杆天线,都是被动的,单极的,其有效长度等于其物理长度,并且为高阻抗;但主动天线拥有以场效应管(FET)和电源为主体的特殊电路,能让天线接收信号的有效长度,突破其物理长度的限制;也就是说,原本需要500米长的天线接收的信号,也可以用20厘米长的天线接收了。

  至此,我们终于可以“随心所欲”地设计天线了。

  “控制”

  至于起控制信号强度作用的放大器,主要有两个功能:

  1、将信号强度控制在一定程度内:正常情况下,天线所接收到的信号强度都无法满足信息处理的需要,所以需要放大器将信号强度提升到一定的程度,信号强度的单位是dBm,0 dBm相当于1mW,10dBm相当于10mW,为对数增长关系;相对强度单位为dB,信号强度增大3dB相当于增大一倍。

  顾名思义,放大器中的信号放大单元会将信号的强度放大,然后交由车载信息娱乐系统处理,并保证导线中信号的衰减不会影响的信息读取。但根据特殊需要,放大器中会配置闭环回路,也能保证在接收到的信号强度过大时,将其削减到合理范围。

  2、匹配(compensation)天线和信息娱乐系统阻抗:简单来说,就是要将接收系统(天线和放大器)的阻抗调整到接近信息娱乐系统阻抗,这样可以将信号传输时的功率损失降到。通过一个阻抗转换单元,天线从高阻抗变为50欧姆左右的低阻抗。

  阻抗:是指电路中电阻、电感、电容等元件对交流电的阻碍作用,不仅描述电压和电流之间的振幅关系,也描述它们的相位关系。电阻就是电路在直流电(相位=0)下的阻抗。

  阻抗是天线领域内非常重要的概念,因为需要接收/发送的信号频率不同,接收系统电路的阻抗存在很大差异。如何在动态情况下实现功率匹配,一直是天线系统电子工程师们关注的话题。

  各个天线系统生产商所用的匹配方式也不尽相同,有无脑调试系统,使之接近50?的,因为50?是行业内“约定俗成”的目标阻抗;也有根据信号强度适当改变阻抗标准的。各有利弊,这里就不展开了。

  汽车天线系统变迁

  之前看过了新型天线,我们再来看看汽车天线系统外观的变迁。

传统天线(1辫子天线、2短杆

天线)与新型天线(3鲨鱼鳍、4集成天线)

  上图1是笔者的老福特车,传统的车载天线大多就是这样一根金属杆,有的还可以伸缩,位于车前、车顶或者车后,一不小心就被熊孩子拔下来当武器了。其功能也非常单一,无非是接收AM/FM广播模拟信号。

  之后出现了上图2中的短杆天线,缠绕在天线杆上的金属丝不仅能起到防止天线晃动、减小噪音的作用,同时也增加了天线的有效长度。两者属于所谓的传统天线。

  汽车天线系统发展到现在,各个不同的汽车制造公司都有他们自己的天线系统方案,比如宝马倾向于使用鲨鱼鳍天线(上图3),简约而不简单,低调而不低档,但其外形大同小异。

  更多的公司则兼容并包,比如捷豹路虎,在通过鲨鱼鳍天线实现GPS、LTE、卫星信号接收的同时,他们也选择集成天线(上图4),来接收AM/FM以及数字广播/电视信号。集成天线的位置不尽相同,玻璃、保险杠、定风翼等等,都可以是天线的载体;其外形也大相径庭,有时是细长的金属丝,有时是扁平的金属片。这哥俩属于所谓的新型天线。

  至于与天线相配套的放大器,也根据需要处理的信号不同,形成各自的结构,下图所展示的,是FM信号放大器的一部分电路图,以及TV/TS信号放大器的实物图。

FM信号放大器电路图,及TV/TS信号放大器实物图

  红圈里是FM信号放大器的控制部分,其余的,则为匹配模块、防静电模块、控制模块等等。比如红圈以下的闭合回路就是AGC(Automatic Gain Control ,信号强度自动控制),当输入信号过高时,能够起到负反馈作用,削减信号强度。

  由于不是外观件,所以放大器外观的变化就不那么重要了。而放大器的个体大小和电子元件的大小密切相关,随着SMD(surface-mount device,表面粘贴元件)的出现,一代的车载放大器实物大约15cm长、5cm宽、5cm厚。但随着摩尔定律的逐渐失效,放大器的“减肥”过程也在逐渐放缓。

  天线和放大器,就组成了简单的信号接收系统。

  如何调试一个新天线系统

  影响汽车天线系统功能的潜在因素实在不胜枚举:高楼、金属物体、风雨雷电,甚至阳光、路过的电瓶车。无人,我是说无人,可以断言任何一款车的天线系统的路上表现。因此调试是新天线系统走向应用的关键一步。笔者亲历过不少集成天线的调试过程,调试天线的方法有两种——软件模拟,或者实物测试。

  软件模拟没什么好说的,在RF(Radio Frequence)领域,ADS(Advanced Design System)和FEA(Finite-Element-Analyse,有限元分析)软件属于标准配置,前者和Labview类似,可以模拟天线系统自身的工作情况;后者则能够模拟天线周围的环境,预判其接收效果。略过不表。

  实物调试就比较有意思了,以下图车后玻璃集成天线为例,概括起来一个字——蒙!先别笑,这里的蒙是有技术含量的,并不是玩俄罗斯轮盘。

  蒙:基于几十年的经验,汽车天线工程师们大致可以根据要求和情况,估计集成天线在车辆的哪个部位的接收效果。大体上说,天线应该适当选择较高的位置,位置越高,能够接收到的信号强度越高,就越容易控制。

  这里谈论的车,可能在几年后才会上市,工程师只能根据厂家的车型介绍,结合现有的相似车型,提供天线位置的建议。当然,一些车辆制造商会直接给出汽车天线的位置要求,这倒是省了工程师不少事,毕竟不是每个设想都能被实现,其中有打自己脸还是打别人脸的区别。

  第二蒙:具体集成天线的结构。天线分几股?每股多长?距离多远?直线还是分叉等等。这个选天线的事情有可能“随意”到不像个正儿八经地科学测试……但是,评价一款接收系统好坏的标准非常简单——系统对目标信号的接收和放大能力,必须达到汽车厂商的要求。

  某,笔者和一个同事花了几个小时在调试集成在后窗玻璃上的天线,整个过程其实只是不断将3股天线中的某一根截短或加长,等待一个令人满意的结果“自动出现”,说是守株待兔也并不为过。

  当然,话要说回来,这个过程是遵循一定规律的,而这个规律,本身是不规律的,需要几十年的经验积累……

  因为——车内的任何金属部件,都有可能引起接收系统与信号的非正常共振,影响信号的输出强度,比如座椅中的金属支架、某一段特殊长度的导线;更麻烦的,是有电流通过的部件,诸如尾灯、刹车灯、整流器等等,一旦它们的电磁兼容(EMC)没有做到完美(一般情况下,不可能完美),汽车天线工程师可能就要死一大堆脑细胞了。更不用提正式上路之后,潜在的影响因素就更多了。

  再扯扯一些特别的技术要求,有一些FM天线直接将整个加热网作为天线本体,为了防止加热电流对高频信号产生影响,加热丝的两端要加装陷波器(Wavetrap),过滤掉直流的加热电流中的交流部分。将天线集成在某个位置的方式几乎适合所有车型,但是也有其局限性:对于AM/FM以及数字电视/广播信号的接收,信号在被接收后,必须马上经由放大器处理,否则导线的削减效果会让信号“消失”,所以在集成天线附近,需要给放大器预留位置。频率更高的信号(SDARS、LTE等)则需要直接接入放大器(如鲨鱼鳍天线中的情况),因为天线与放大器之间任何导线都可能造成高频信号的失真。

  汽车为何需要“新型”天线系统?

  新型天线的优点,首先当然是它能满足汽车本身对各种新兴信号的接收要求:数字广播信号的音质,和CD无异,我们不再需要忍受模拟信号无尽的背景杂音了;GPS信号提供车辆定位、紧急情况处理服务;远程控制信号能实现汽车预加热/制冷、发动机提前启动等等功能,这是传统天线可望而不可及的。

  其次,新型天线不像传统天线一样容易损坏,因为它们体积更小,结构更坚固,甚至有些位于车体内,受到的外界环境威胁(比如熊孩子)要小得多。,就是“新型天线在美学上的功用”,说得直白一点:好看!如果还要形象一点,那我们就用手机作个比方吧。自己用上了智能机,那就别让自己的爱车用大哥大了嘛!

  敢问路在何方?

  随着无人驾驶等等技术的出现,汽车天线系统在原本接收信号的基础上,也必定需要具备发射信号的功能,因为汽车将不再是独立的个体,而是整个交通网络的组成部分,需要与周围的事物实时“交流”。比如新兴的“Car2X”概念,就是说要让车和其他的电子设备进行实时沟通,比如其它车、行人的手机、信号灯、交通控制网络等等,就是要赋予车“自我感知和判断”的能力——简单的例子,“低头族”正在一边玩着手机一边过马路,汽车天线系统能够通过定位手机,预判行人走向,从而自动调节车辆制动和方向系统,避免悲剧发生,判断的依据,将会是汽车天线系统所提供的位置信息。

  “Car2X”天线系统是所有汽车生产商关注的对象,这也给汽车天线系统的生产厂商提出了新的要求——在不久的将来,交通系统将成为一张网络,作为其主体组成的汽车、火车、飞机等交通工具,必须协调运作,优化效率,这通通取决于相互的信息交流,汽车天线系统作为信息交流的媒介,任重道远。

  比如炙手可热的毫米波雷达,顾名思义,就是波长在毫米等级的信号发射/接收系统,其超高的频率(30至300GHz)带来了超快的信息交流速度,以及短距离内较强的穿透力(但是一旦下雨,就完全失效)。毫米波雷达被用来探测车辆周围的环境,使车辆能够对快速的环境变化作出及时的“反应”。

  设想一下,如果你的车能够与交通网络“交流”,一路绿灯将不再是梦想;与行人“交流”,能够避免多少车祸;与其它的车“交流”,省去了刮擦的危险等等,也许某一天,驾照将不再是驾车的前提,甚至你的爱车会“独自”上路,购买生活用品,接送孩子上下,画美不看。当然,实现这一切,只靠汽车天线系统的发展是远远不够的,毕竟小编不能像推销脑白金一样介绍汽车天线系统不是吗?

  汽车天线行业现状

  目前市面上主要的汽车接收系统生产商有德国的福霸(Fuba)、凯瑟琳(Kathrein),美国的莱尔德(Liard)以及日本的原田(Harada)。国内有苏中天线,几乎是处于垄断地位。作为万年被忽视的汽车部件,汽车天线行业并没有自暴自弃,相反地,正因为其“不入法眼”,导致行业竞争异常血腥——除非有好的口碑,否则就等着被淘汰吧,再仰望下整车制造厂商,真可谓“人为刀俎,我为鱼肉”,鱼还游在鱼塘里。

汽车天线行业的利润产生方式也比较特殊——给迈凯轮、法拉利、宾利供货只是吹嘘技术水平的资本,即便一个天线卖上500欧元,这些高端车的年销售量只有几千,利润远远不及10欧元一个给福特福克斯(focus)的天线,因为它的年销售量接近百万。对于汽车零部件行业从业人员来说,还有另外一个得瑟的机会:产品需要在样车上进行路上测试,500+ps的跑车

汽车天线行业的利润产生方式也比较特殊——给迈凯轮、法拉利、宾利供货只是吹嘘技术水平的资本,即便一个天线卖上500欧元,这些高端车的年销售量只有几千,利润远远不及10欧元一个给福特福克斯(focus)的天线,因为它的年销售量接近百万。对于汽车零部件行业从业人员来说,还有另外一个得瑟的机会:产品需要在样车上进行路上测试,500+ps的跑车经常会出现在公司车库里,小编目测这些车是自己奋斗一辈子也买不起,那就开去测试过个瘾。这里放个车内的视角,实在是车子还没上市,不方便透露外观。

某500+ps跑车

  此外,对天线系统元件的成本压缩也是盈利的重要方式,1个电阻便宜1分钱,1个产品上有5个相同电阻,产品的生命周期为500万件……这个成本不得不算,这也导致汽车天线行业的无数,都只能贴在墙上。目前行业的热点,就是“Car2X”,谁走在“Car2X”研发的前列,谁就可以统领未来的汽车天线市场,毕竟,这是个求盈利的行业,技术垄断就是市场垄断,不是吗?

上一篇:使用电磁流量计 需避开这些错误
下一篇:电池系统起火原因分析

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料