人脸识别技术实现方法全解析

时间:2016-04-06
    人脸识别,一种基于人的脸部特征信息进行身份的生物特征识别技术。近年来,随着欧美发达国家人脸识别技术开始进入实用阶段后,人脸识别迅速成为近年来的一个市场热点。虽然人脸识别技术经常听,但你知道它是如何实现的吗?
   

    人脸识别技术包含三个部分:
    1.人脸检测
    面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:
    ①参考模板法
    首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸。
    ②人脸规则法
    由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸。
    ③样品学习法
    这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器。
    ④肤色模型法
    这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。
    ⑤特征子脸法
    这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子空间的投影之间的距离判断是否存在面像。
    值得提出的是,上述5种方法在实际检测系统中也可综合采用。
    2.人脸跟踪
    面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。
    3.人脸比对
    面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。主要采用特征向量与面纹模板两种描述方法:
    ①特征向量法
    该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。
    ②面纹模板法
    该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。此外,还有采用模式识别的自相关网络或特征与模板相结合的方法。
    人脸识别技术的实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。
上一篇:适用于自动化生产的光投影技术
下一篇:如何利用单个反馈源实现任意量级偏置电流网络

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料