MC3361+MCU低速通信系统电路

时间:2015-07-17

  光纤通信做为一种新兴的高性能的串行通信技术,已经在电力领域逐步展开应用。目前的光纤通信模块大多使用 FPGA 或DSP  技术实现信号解调,虽然其传输速度快、效率高,但是成本高、技术复杂,而且对于传输距离、电器隔离特性、可靠性、产品成本参数等都有极高的要求。而电力行业对光纤的应用主要还是集中在强电的控制方面,现场环境对光纤模块的通信速度要求较低。所以,在电力系统的工程实际中,由于现场情况复杂、干扰信号繁多,致使高成本的高速光纤通信技术的应用并不十分理想。鉴于光纤通信技术在电力系统中的应用现状,本文提出一种MC3361+MCU结构的低速光纤通信模块设计方案。硬件成本低、软件流程简单、性能稳定,输出信号为工业标准RS485  信号或RS232 信号,可直接与各种电力设备连接,非常适合在电力系统中广泛使用。

  调制原理

  光纤通信系统由MCU通过内部程序控制通过PWM 接口完成调制。外部设备与模块通过串行接口(包括RS232 接口或RS485  接口)连接,模块接收到数据后,首先将数据传输给MCU,MCU 通过UART 接口接收到数据,MCU通过程序控制输出BFSK  调制信号,调制后的信号直接发送至光纤发射接口发送出去。进行BFSK 调制时使用MCU  串行接口接收外部设备发送的数据,BFSK的调制频率由程序控制,信号“1”对应于270KHz 载频,信号“0”对应于240KHz 载频,波形如图2  所示,上边的波形为未经调制的信号,下边的波形为经调制后的信号。MCU  将调制后的载频信号通过PWM方式发送至光纤发射接口,电信号转换成光信号。调制硬件原理框图如图1 所示。

  揭秘MC3361+MCU低速通信系统电路

  图1 调制硬件原理框图

  揭秘MC3361+MCU低速通信系统电路

  图2 调制前后信号的波形图

  调制解调原理

  为了降低硬件成本和提高硬件电路的可靠性,本设计使用BFSK调制解调算法。BFSK  的调制原理是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。BFSK 信号是符号“1”对应于载频f1,而符号“0”对应于载频f2(与f1  不同的另一载频)的已调波形,而且f1与f2 之间的改变是瞬间完成的。

  BFSK 的解调使用MC3361 单片窄带调频接收芯片完成,MC3361  片内包含振荡电路、混频电路、限幅放大器、积分鉴频器、滤波器、抑制器、扫描控制器及静噪开关电路。解调电路原理图如图3 所示。其中,185K 网络标号为MCU  输出185K 矩形波信号,R1 为限流电阻,C5、L4 组成滤波电路,C12 谐振电容,信号经过R1、C5、L4 及C12 后,由MC3361 第1  脚输入,构成MC3361 解调的第二本振级。图3中FSK 网络标号为光纤接收接口输入的矩形波信号,信号经过R4、R6  分压,将信号高电平转换为500mV,再经过L6、C25进行滤波,及C27、L7、VD1、VD2 二次限压滤波后,消除干扰频率后,经过C1  谐振,终信号转变为正弦波信号。

  揭秘MC3361+MCU低速通信系统电路

  图3 解调电路原理图

  终只有标准正弦波信号输入至MC3361 的第16 引脚,作为MC3361 的中频IF  输入信号,信号幅值为0V,峰值为500mV,频率为270KHz 或230KHz。在MC3361 内部第二混频级进行混频处理,处理后的信号为455KHz  的第二中频信号,由第3 引脚输出,由455kHz 陶瓷滤波器选频,即图3 中的Z4 器件,再经第5 脚输入MC3361  的限幅放大器进行高增益放大,限幅放大级是整个电路的主要增益级。第8 脚接鉴频电路,由455kHz 鉴频器Z3、R2 及C26  组成,经放大后的第二中频信号在内部进行鉴频解调,并经音频电压放大后由第9 引脚输出信号,信号经过第10 脚和第11 脚构成的有源滤波电路,再输入MC3361  的第12 脚进行载频检测并控制电子开关,终经过解调的信号由第13 引脚输出,直接输入MCU 的引脚,由MCU 进行处理。

  编辑点评:光纤通信模块FPGA 或DSP  技术实现信号解调,成本高、技术复杂,采用MC3361+MCU结构的低速光纤通信模块设计方案,成本低、软件流程简单、性能稳定,并且支持RS485 信号或RS232  信号,还有电力线连接,非常适合推广使用。

上一篇: 采用MCU控制的蓝牙无线充电系统设计
下一篇:解读低功耗移动电源系统硬件电路

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料