浅析大功率IGBT芯片的技术现状与特点

时间:2014-03-05

  导读:本文分别从IGBT芯片体结构、背面集电极区结构和正面MOS结构出发,系统分析了大功率IGBT芯片的技术现状与特点,从芯片焊接与电极互连两方面全面介绍了IGBT模块封装技术,并从新结构、新工艺及新材料技术三方面分析了IGBT技术未来的发展方向。

  一、背景

  绝缘栅双极晶体管(Insulated Gate Bipolar Transistor,IGBT)是在金属氧化物场效应晶体管(MOSFET)和双极晶体管(Bipolar)基础上发展起来的一种新型复合功率器件,具有MOS输入、双极输出功能。IGBT集Bipolar器件通态压降小、载流密度大、耐压高和功率MOSFET驱动功率小、开关速度快、输入阻抗高、热稳定性好的优点于一身。作为电力电子变换器的器件,为应用装置的高频化、小型化、高性能和高可靠性奠定了基础。

  自IGBT商业化应用以来,作为新型功率半导体器件的主型器件,IGBT在1-100kHz的频率应用范围内占据重要地位,其电压范围为600V-6500V,电流范围为1A-3600A(140mm x 190mm模块)。IGBT广泛应用于工业、4C(通信、计算机、消费电子、汽车电子)、航空航天、国防军工等传统产业领域以及轨道交通、新能源、智能电网、新能源汽车等战略性新兴产业领域。采用IGBT进行功率变换,能够提高用电效率和质量,具有高效节能和绿色环保的特点,是解决能源短缺问题和降低碳排放的关键支撑技术,因此被称为功率变流产品的“CPU”、“绿色经济之核”.在未来很长一段时间内,为适应降低CO2排放的战略需要,IGBT必将扮演更为重要的角色,是节能技术和低碳经济的重要支点。

  目前,世界各大功率半导体公司对IGBT的研发热潮日益高涨,研究步伐和技术革新日益加快,IGBT芯片的设计与生产厂家有英飞凌(Infineon)、 ABB、三菱(Mitsubishi Electric)、Dynex(中国南车,CSR)、IXYS Corporation、International Rectifier、Powerex、Philips、Motorola、Fuji Electric、Hitachi、Toshiba等,主要集中在欧、美、日等国家。因为种种原因,国内在IGBT技术研究开发方面虽然起步较早,但进展缓慢,特别是在IGBT产业化方面尚处于起步阶段,作为的IGBT应用市场,IGBT模块主要依赖进口。近年来,在国家宏观政策的引导和组织下,国内企业通过各种途径在IGBT芯片、模块等领域已经取得很多可喜的进展,中国南车通过并购英国Dynex半导体,充分利用欧洲丰富的技术资源,成立功率半导体海外研发中心,迅速掌握了先进的1200V-6500V IGBT芯片设计、工艺制造及模块封装技术,并且在株洲建设了一条先进的8英寸IGBT芯片及其封装生产线,并将于2014年初实现IGBT芯片量产。

  在模块封装技术方面,国内基本掌握了传统的焊接式封装技术,其中中低压IGBT模块封装厂家较多,高压IGBT模块封装主要集中在南车与北车两家公司。与国外公司相比,技术上的差距依然存在。国外公司基于传统封装技术相继研发出多种先进封装技术,能够大幅提高模块的功率密度、散热性能与长期可靠性,并初步实现了商业应用。

  二、技术现状

  1.IGBT芯片技术

  IGBT芯片在结构上是由数万个元胞(重复单元)组成,工艺上采用大规模集成电路技术和功率器件技术制造而成。每个元胞结构可分成体结构、正面MOS结构及背面集电极区结构三部分。

  2.IGBT模块技术

  IGBT模块按封装工艺可分为焊接式与压接式两类。常见的焊接式IGBT封装主要包括母排电极、键合引线、芯片、焊层、衬板和基板几大部分,各个部分之间的连接技术则构成了IGBT模块封装的关键技术,可分为芯片焊接与固定以及各芯片电极互连与引出两大方面。为了提高模块的可靠性,要求各部分材料的热膨胀系数(CTE)相匹配,散热特性好及连接界面尽量少且连接牢固。

  三、IGBT发展趋势

  IGBT作为电力电子领域非常理想的开关器件,各种新结构、新工艺及新材料技术还在不断涌现,推动着IGBT芯片技术的发展,其功耗不断降低,工作结温不断升高,从125℃提升到了175℃并向200℃迈进,并可以在芯片上集成体二极管,形成逆导IGBT(RC-IGBT/BIGT),无需再反并联续流二极管,在相同的封装尺寸下,可将模块电流提高30%,还可以将电流及温度传感器集成到芯片内部,实现芯片智能化。通过对IGBT芯片的边缘结构进行隔离处理,可以形成具有双向阻断能力的IGBT(RB-IGBT),在双向开关应用中无需再串联二极管,并具有更小的漏电流及更低的损耗。

  超结技术(super junction)打破了传统硅器件的导通压降与耐压的极限关系(Ron∝VB2.5),可大大降低器件功耗,已成功应用在MOSFET上。将该技术应用在IGBT上,则可以进一步降低功耗,目前已受到广泛的关注。超结IGBT的主要难点是工艺实现,为了降低工艺难度,各种“半超结”结构被提出,实现性能与工艺的折中。

  与此同时,IGBT的工艺水平也在不断提升,许多先进工艺技术,如离子注入、精细光刻等被应用到IGBT制造上。IGBT芯片制造过程中的特征尺寸已由5um,到3um, 到1um,甚至达到亚微米的水平。采用精细制造工艺可以大幅提高功率密度,同时可以降低结深,减小高温扩散工艺,从而使采用12英寸甚至更大尺寸的硅片来制造IGBT成为可能。随着薄片与超薄片加工工艺的发展,英飞凌在8英寸硅片上制造了厚度只有40um的芯片样品,不久的未来有望实现产品化应用。

  3.IGBT模块技术发展

  随着IGBT芯片技术的不断发展,芯片的工作结温与功率密度不断提高, IGBT模块技术也要与之相适应。未来IGBT模块技术还将围绕芯片背面焊接固定与正面电极互连两方面不断改进,有望将无焊接、无引线键合及无衬板/基板等先进封装理念及技术结合起来,将芯片的上下表面均通过烧结或压接来实现固定及电极互连,同时在模块内部集成更多其他功能元件,如温度传感器、电流传感器及驱动电路等,不断提高IGBT模块的功率密度、集成度及智能度。

  总之,IGBT芯片目前普遍采用平面栅或者沟槽栅结构,并运用软穿通体结构与透明集电极区结构技术,以及各种增强型技术,以提高综合性能和长期可靠性。高压IGBT模块技术还是以标准的焊接式封装为主,中低压IGBT模块产品则出现了很多新技术,如烧结取代焊接,压力接触取代引线键合,无衬板/基板封装等。未来IGBT将继续朝着集成化、智能化、小型化的方向发展。

上一篇:小分享:软启动器的基础知识
下一篇:中频电炉逆变桥晶闸管烧损故障诊断

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料