高清音频IC设计难题解决方案

时间:2011-09-04

  相比目前的家居音频设备,下一代家居音频产品在多方面对芯片厂商提出了更高的要求。例如需要支持多个数据流、更高的比特率和更多的通道;同时要求具备达32位的高质量无损音频解码器以及先进的后处理功能。

  除了满足上所述条件外,还需要通过减少系统门数量和使用小型存储器、以及采用低成本的外部存储器(如DDR2-800或更便宜的存储器)等方法来实现芯片尺寸的缩减,从而实现高成本效益。此外,由于散热及良率引起功耗敏感问题也必须引起重视。

  高清晰音频IC设计的另一个瓶颈来自于访问外部存储器的响应速度慢。由于系统DDR存储器通常要与主处理器、视频处理器等其它资源共享,而其中音频处理器往往在DDR访问中的优先级别较低,造成外部存储器访问需要长达150-200个处理器周期,再加之音频任务转换(多个解码器、编码器、后处理功能、混合等)需要存储器数据交换,这就要求芯片在设计方面要找到一个折衷且高效的方法。

  根据报道,预计到2011年,DTV、机顶盒和蓝光DVD的销售量将分别达到1.87亿、1.6亿及1.16亿台。除此之外,A/V接收器、高清便携式摄像机、IPTV及手机等其他市场领域也将大幅增长。

  不过,在处理要求、音频声道、比特率和要求方面,标清和高清音频规范之间存在着很大的差异。高清音频系统的众多新要求,不单影响着集成电路(IC)设计的各个方面,而且也给这些新设备实现高质音频带来了重大挑战。

  本文将介绍各种不同的高清媒体分发技术,探讨IC 设计人员面临的设计挑战,并提出高效实现高清音频的解决方案和设置方法。

  图1 7.1音箱系统的放置

  高清音频的应用机会

  下面介绍高清音频的三大主要应用机会。

  1 数字电视(DTV)

  数字电视是人们谈论多的热闹话题之一。由于数字电视是种新鲜事物,一些相关报道及文章介绍中出现似是而非的概念,诸如"数码电视"、"全数字电视"、"全媒体电视"、"多媒体电视"等,造成大众感到困惑,茫然不知所措。其实,"数字电视"的含义并不是指我们一般人家中的电视机,而是指电视信号的处理、传输、发射和接收过程中使用数字信号的电视系统或电视设备。其具体传输过程是:由电视台送出的图像及声音信号,经数字压缩和数字调制后,形成数字电视信号,经过卫星、地面无线广播或有线电缆等方式传送,由数字电视接收后,通过数字解调和数字视音频解码处理还原出原来的图像及伴音。

  数字电视是一个从节目采集、节目制作节目传输直到用户端都以数字方式处理信号的端到端的系统。基于DVB技术标准的广播式和"交互式"数字电视。采用先进用户管理技术能将节目内容的质量和数量做得尽善尽美并为用户带来更多的节目选择和更好的节目质量效果,与模拟电视相比,数字电视具有图像质量高、节目容量大(是模拟电视传输通道节目容量的l0倍以上)和伴音效果好的特点。

  数字电视(DTV)使用分立(数字)信号来实现运动图像和声音的发送与接收。从模拟电视到数字电视的转换始于1990年代末期,而因为它提供了全方位的新商机,所以很快成为了电视广播和消费电子行业备受瞩目的技术。在早期采用DTV的国家中,荷兰和芬兰分别在 2006年和2007年就完成了模数转换;而美国从2009年6月12日起,国内所有的电视台都将只使用数字模式来播送节目。另一方面,英国已开始向 DTV的转换,并预定在2012年全面实现DTV广播。中国方面则计划到2015年完成到DTV广播的转换。

  2 机顶盒(STB)

  机顶盒(STB)的全称叫做"数字电视机顶盒",它是一种将数字电视信号转换成模拟信号的变换设备,它对经过数字化压缩的图像和声音信号进行解码还原,产生模拟的视频和声音信号,通过电视显示器和音响设备给观众提供高质量的电视节目。它采用了兼容的办法,在中国一直延续到现在。

  3 蓝光光盘

  Blu-ray Disc,中文译为蓝光光盘,即蓝光DVD是DVD光碟的下一世代光碟格式。在人类对于多媒体的品质要求日趋严格的情况下,用以储存高画质的影音以及高容量的资料储存。它以前的竞争对手是HD DVD,两者各有不同的公司支持,欲争相成为标准规格。2008年2月19日下午5时,东芝公司在日本东京浜松町的本社大楼39层召开新闻发布会,东芝社长西田厚聪在各界媒体前宣布,东芝旗下的HD DVD产品将从3月末正式退出次世代DVD格式竞争。伴随着此次发表,索尼的蓝光在事实上已经实现了次世代DVD格式的天下一统。Blu-ray的命名是来自其采用的雷射波长405纳米(nm),刚好是光谱之中的蓝光,因而得名。(DVD采用650nm波长的红光读写器,CD则是采用780nm波长)。

  强制性的蓝光格式音频编解码器

  蓝光格式规范定义了两套可在蓝光播放器中实现的编解码器。其中套是强制性的,必须用作蓝光光盘的主要音频声道。这些编解码器包括:

  ◆ DTS–一种用于商业/影院应用和视频游戏等消费应用的多声道数字环绕声格式。

  ◆ 杜比数字或AC-3–一种可容纳多达6个分立式音频声道的编解码器,编码比特率为640kb/s,而35mm电影胶片使用320kb/s的固定速率,DVD视频光盘则限于448kb/s.

  ◆ 线性PCM–一种采样频率为48kHz或96kHz、每样本16,20或24位,可容纳多达8个音频声道的无压缩音频格式。比特率为6.144MB/s.

  蓝光格式的可选音频编解码器

  蓝光格式的可选音频编解码器包括有损和无损编解码器。有损编解码器包括:

  ◆ 杜比数字 Plus–一种基于AC-3的增强型有损编解码器,可支持高达6.144Mb/s的比特率和7.1音频声道。它还能提供更先进的编码技术,降低压缩失真(compression artifact),并后向兼容现有的AC-3硬件。

  杜比数字+支持多达7.1声道的高品质环绕声,使消费者可以通过广播电视、流媒体与媒体以及蓝光光碟来享受的高清音频体验。目前为止,已经有数以千万计带用杜比数字+的电视机、机顶盒、蓝光光碟机、音视频接收器以及移动电话进入消费类电子设备市场。

  ◆ DTS高清高分辨率音频–一种可扩展原始DTS格式的有损编解码器,支持96kHz和24位深度分辨率的7.1声道。DTS-HD高分辨率音频可提供高达6.0Mb/s的恒定比特率。

  无损编解码器则有:

  ◆ 杜比数字TrueHD–一种主要用于高清家庭娱乐设备(如蓝光光盘)的高清多声道音频编解码器。编码比特率为18Mb/s(未压缩速率)。这已显示了高清音频的高数据流量要求。

  ◆ DTS-HD主音频–以前被称为DTS++或DTS-HD,是原始DTS编解码器的扩展版本。这是一种无损音频,具有高达24.5Mb/s的可变比特率,并支持192kHz采样频率和24位信号分辨率的7.1分立式声道。

  蓝光高清音频用例

  一个高清音频的计算密集型蓝光使用包含主音频(main audio)和子音频(sub audio)流,以及一个音效流(effects stream)。主音频流可结合DTS-HD 主音频(见前述蓝光光盘一节)或杜比TrueHD 7.1声道,用于播放光盘。子音频流可采用DTS-HD Express或杜比数字Plus,以获得额外的数据,例如,从互联网电影中的导演加注。音效流则是一个简单的PCM音频流,为屏幕菜单增添音效的选择。

  编码流可使用DTS 5.1编码器或杜比数字5.1编码器,而编码必须把数据以压缩的格式传送给一个兼容的音频/视频接收器(比如经由S/PDIF电缆)。混合信号在发送给扬声器之前可能需要后处理功能,以补偿声音失配播放环境或各种不同的音频不完整性。

  图2 5.1编码系统

  高清音频IC的设计挑战

  在设计高清音频IC时,有若干因素需要考虑。高清音频重要的特性是数据流量,因为相比传统的音频应用,高清音频数据流量大大提高。仅对 I/O而言,这种数据流量在某些编解码器就可能达到24.5Mb/s的输入速率和在27.6Mb/s的输出速率下达致每秒96kHz×8×24位的输出。这就需要一种新的IC设计方案来确保这些挑战得到解决,同时保证音频的质量。

  另外,一些采样频率达192kHz、带6个或8个声道,并且运算很高的无损音频编解码器,如DTS-HD主音频或杜比TrueHD,它们的计算要求极高。如果不予以改进,单单一个编解码器就可能消耗掉传统DSP的全部MHz预算。

  性能要求

  如上所述,高清音频实现方案(如蓝光光盘应用)的数据处理要求非常高。在如此高的数据率下,很多现有的单核DSP解决方案都无法保证高质量的数据处理,故业界不少解决方案开始倾向于采用能够满足视频结合音频的处理开销要求的双内核方案。

  而且,在DSP解决方案的实现中,除了强制性及可选音频编解码器之外,还需要许多后处理功能,而这些后处理功能正是众多实现方案的差异化因素。由于在处理的高清音频编解码器时,许多单核DSP都会有过载的情况,所以几乎没有什么剩余能力可言,即便有,也差不多都是用于强制性后处理。

  芯片尺寸/功耗考虑

  由于制造商和设计人员不得不应对挑战,把所有必要的处理功能全部塞入尺寸越来越小的芯片中,这使现有的芯片尺寸也面临着巨大的压力。采用多核解决方案虽然可以提供这些处理能力,但芯片尺寸、相应的价格增加和驱动子系统所需的电能之间的权衡都可能往往令人望而却步。特别在满足具有特殊功率和外形尺寸限制的高清设备(如便携游戏机)要求时,这一点尤其关键。

  即使对于非移动设备,功耗也是一个重要的考虑因素,因为它影响到设备的散热性能。较高的功耗可能需要某些冷却手段,从而对产品的总体设计造成影响。

  任务切换的存储器交换

  高清音频系统中必须执行大量并行任务,故需要非常频繁的存储器交换。这些交换必然会致使存储器带宽过载,让系统无法处理增加的总线流量,终快速降低音质。另外因为指令集常常采用32位格式编写,这又使得指令更大,指令间间隔更长,进一步加剧数据过载问题,而 16位指令集可以减轻这种负载。在数据方面,某些高清音频编解码器需要100Kb以上的数据RAM外加相当大的数据表,也就是强制要求利用存储器交换以高效利用RAM存储器。

  慢速外部存储器存取

  许多在DSP上运行的音频算法传统上均以非序列(non-sequential)的方式对大容量缓存进行存取。一般而言,这些缓存都太大,无法驻留在处理器的片上存储器中,故它们必须置于速度较慢的外部存储器中,如DDR SDRAM.另外,非序列存取也给维持高性能的目标带来一个挑战。由于音频解码器常常与视频解码器争夺数据总线吞吐量,故存储器存取效率非常重要。要提供高质量的音频体验,就必须解决这个难题以实现稳定的性能。

  解决难题

  要解决影响高清音频DSP领域的众多问题,需要一个基于功能强大的数字信号处理器的系统,其中应包括合适的软件和外设。CEVA-HD-Audio就是这种高清音频系统的实例,它是一个全面完善的单核DSP解决方案,能够满足严苛的高清音频使用的要求。

  CEVA-HD-Audio是基于CEVA-TeakLite-III DSP内核的系统。CEVA-TeakLite-III拥有本地32位处理能力和双乘法累加(Multiply-Accumulate, MAC)架构,是需要先进音频标准的高清音频应用的理想DSP方案。另外,CEVA-TeakLite-III还具有良好平衡的10级管线,使其内核在 65nm工艺下的运作频率仍超过550MHz(在差条件和工艺)。CEVA-HD-Audio集成了一个带有32位寄存器文件、64位数据存储带宽、 32×32位乘法器和自动32位饱和的本地32位SIMD DSP处理器。CEVA-TeakLite-III还具有一个带有完善MAC指令集的双16×16 MAC,可实现语音/VoIP和全面的流处理位操作(bit-manipulation)功能,这对流处理十分有用。除了带有多点的固有32位数据处理功能之外,单周期32位MAC单元还包括用于无损编解码器的72位MAC累加,和独特的单与双FFT蝶形指令(butterfly instruction),以及一个2/4周期内核。

  图3  CEVA TeakLite-III结构框图

  CEVA-TeakLite-III架构嵌入了CEVA-Quark指令集,是全面的独立式嵌入紧凑型指令集架构(ISA)。这种独特的 ISA旨在仅利用16位指令,减小芯片的尺寸和成本,同时降低功耗,减少存储器存取次数。CEVA-Quark ISA是一套完整的指令,包括存储器存取、算术与乘法运算、逻辑、移位和流处理位操作指令以及控制操作。应用程序开发人员还可以把CEVA-Quark指令与其他更先进的CEVA-TeakLite-III指令相混合,无须切换到不同的运作模式。这种组合特性可使代码量减少4倍,周期数减少了近9倍。

  利用单核实现高性能高清音频

  上面提到的处理效率,显示CEVA-TeakLite-III能够利用单核DSP,轻松提供完整的高清音频支持。由于它拥有更小的存储器,所以尺寸更小,性能更高,比市场上其他竞争解决方案更为优胜。单核实现方案也意味着不论从硬件还是软件的角度来看,应用开发和集成都更为容易。

  本地音频处理

  CEVA-HD-Audio具有32位本地处理能力,故能为高清音频算法提供很高的。此外,64位的数据存储器带宽可确保 DSP不断有数据样本与系数馈入,从而实现连续处理。为应对这些挑战,CEVA-HD-Audio解决方案还备有一套完整的音频编解码器。音频编解码器算法设计使用一个普通的DMA引擎,使数据传送和算法执行能够并行进行,有助音频算法和编解码流程。另外,CEVA-HD-Audio还包含了一个带有指令缓存的存储子系统、用于数据的紧密耦合存储器和AHB/APB系统接口(包括主和从接口)。这些特性能帮助CEVA-HD-Audio用户满足复杂音频使用、外部存储器存取的高延时和有限的系统速度等严苛要求。它们也易于集成到基于CPU的SoC中,可以实现完整音频系统的快速产量提升。

  高清音频的软件开发

  一套包括C编译器、汇编器、链接器、代码库、调试器和仿真器的完整的软件开发工具也是非常重要的,因为它们能够帮助用户迅速方便地进行系统的开发和集成。一个基于GUI的开发环境也让编程人员能够轻松遵循不同的处理流程,提高编程、编译和调试流程的效率。


  
上一篇:车载多功能无线系统的设计
下一篇:语音降噪系统设计和实现

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料