数字化变电站是由智能化设备(电子式互感器、智能化开关等)和网络化二次设备分层(过程层、间隔层、站控层)构建,建立在IEC61850通信规范基础上,能够实现变电站内智能电气设备间信息共享和互操作的现代化变电站。
数字化变电站是应用IEC61850进行建模和通信的变电站,数字化变电站体现在过程层设备的数字化,整个站内信息的网络化,以及开关设备实现智能化。本文提出了数字变电站线路差动保护基于乒乓原理的时钟信号同步方案,并分析探讨了基于该同步时差动保护性能和互操作的解决方案。
一、引言
由于光电技术和计算机的飞速发展,新型光学电压、电流互感器日益显现出富有魅力的前景和强大的生命力,逐步取代电磁式互感器是继电保护的一个发展方向。
变电站运行管理自动化系统应包括电力生产运行数据、状态记录统计无纸化;数据信息分层、分流交换自动化;变电站运行发生故障时能及时提供故障分析,指出故障原因,提出故障处理意见;系统能自动发出变电站设备检修,即常规的变电站设备“定期检修”改变为“状态检修”。
数字化变电站建设应充分体现设备智能化和二次设备网络化的设计理念。设备智能化的重点是光电互感器和智能断路器的应用。二次设备网络化应贯彻和执行IEC61850标准。数字化变电站建设应以电网安全、可靠和经济运行为前提,有效解决数据采集设备重复投资问题和二次智能设备的互操作问题。数字化变电站对光纤纵差保护提出了一些新问题,本文将结合220kV数字化变电站系统方案详细说明光纤纵差保护如何解决上述问题。
二、光纤纵差保护的应用环境
数字化变电站内线路保护、主变保护、母线保护通过过程层间隔局域网,实现数据源和智能操作机构的共享。数字化变电站之间的一对光纤纵差保护通过租用的光纤通道实现数据的共享和采样时钟的同步。光纤纵差保护的应用环境如图1所示。
变电站内常规的二次设备,如继电保护装置、防误闭锁装置、测量控制装置、远动装置、故障录波装置、电压无功控制、同期操作装置以及正在发展中的在线状态检测装置等全部基于标准化、模块化的微处理机设计制造,设备之间的连接全部采用高速的网络通信,二次设备不再出现常规功能装置重复的I/O现场接口,通过网络真正实现数据共享、资源其享,常规的功能装置在这里变成了逻辑的功能模块。
数字化变电站的数据源来自合并单元(Mu),Mu的采样采用全站统一的时钟源SYN。各站的线路差动保护也采用同一时钟源。Mu数据通过过程层交换机给间隔的继电保护设备,包括线路保护、母差保护等。线路差动保护的数据来自2个不同的变电站,在系统内无统一时钟信号时,两站Mu的采样不同步。差动保护需要解决两侧采样数据同步问题。
三、数字化变电站对数据采集的要求
数字化变电站每个线路间隔的MU提供线路保护需要的Ia,Ib,Ic,ua,Ub,Uc,3Uo,31o,以及一相母线电压数据,线路保护、主变保护和母线保护通过过程层间隔交换机与间隔MU按IEC 61850-9-1/2标准通信获取上述数据,实现数据源的共享。目前2个变电站之间的一对光纤纵差保护采取的是以某个变电站光纤纵差保护的采集时钟为主时钟,另一个变电站光纤纵差保护调整自身的采集时钟与主时钟同步的方法。增加MU违背数据源共享原则,通过定位系统(GPS)实现变电站之间的数据采集同步,违背电网安全可靠运行规则。这就引出了本文所要论述的主要问题:如何实现变电站之间的数据采集同步?
四、光纤纵差保护实现的关键问题
(一)线路差动保护同步
在数字化变电站中,母差保护和变压器保护所采集的交流量均在一个变电站内,在全站使用统一时钟源时,各Mu采样同步,不存在同步问题。与传统的线路差动保护采样同步不同,数字化变电站的交流量采集由Mu完成,不能实时调整采样,这就需要对同步提出新的方案。
1、基于乒乓原理的时钟信号同步
数字化变电站的线路差动保护采用基于乒乓原理的时钟信号同步的采样同步调整方案
以M站差动保护为例,当装置收到本站的同步信号SYNM时,在传向N站的数据帧中增加“同步信号帧”;同时在收到N站传过来的“同步信号帧”时,记录下此时刻相对于本侧同步时钟的时差Tma,同时回发N侧一帧“同步确认帧”。“同步确认帧”中包含Tma。N侧装置的收发过程与此相同。
M站差动保护在收到从N站传过来的“同步确认帧”时,记录下此时刻相对于本侧同步时钟的时差Tnb。同理,N站检测到的本侧保护装置与对侧保护装置的同步时钟的时刻差△t=Tmb/2-Tna。
△t有正负之分。当△t为正时,表示本侧同步时钟超前对侧同步时钟:当△t为负时,表示本侧同步时钟落后对侧同步时钟。
数字化变电站光纤分相纵差保护要求两侧Mu的采集频率相同,假设Mu发送数据帧的频率为fs,计算出△t后,可计算出两侧差动保护装置对点的间隔Nd,Nd=round(fS△t)
式中:round函数是将实数取整,余数四舍五入。
当△t为正时,将本侧的采样值后移Nd点与对侧同步;当△t为负时,将本侧的采样值前移Nd点与对侧同步。
采用此种同步方式,两侧同步后理论上存在的相位差δ=ω/(2fS),其中,ω为系统角频率。
2、相位差分析
数字化变电站的光纤差动保护采用时钟信号同步后,两侧装置的同步时差td可表示为:
td=δ+ts
式中:δ为基于乒乓原理的时钟同步后两侧角差。
由于电子式互感器的数据采集频率fs比较高,采用时钟信号同步后的线路差动保护的同步角差与fs相关,成反比关系。以每周期40点(fS=2000Hz)采样为例,同步后的角差6≤4.5°。
ts为两侧Mu的采样相对于各自全站统一时钟源的时间差。目前,Mu的运算速度快,两侧不一致的时间差小,一般在10μs以下。
采样报文从Mu经过网络交换机传输到保护装置,这个时间在同步报文中考虑,不影响同步后的时差。
综合分析,从电气量到保护计算整个环节,基于乒乓原理的时钟信号同步后对点造成的角差δ为两侧差动保护不完全同步的主要因素,导致二次电流相对于电流有角差。因此,数字化变电站线路两侧电流互感器传变无角差,基于同步形成的时差td对差动保护影响小,可以不用考虑其对差动的影响。
(二)线路纵差保护的性能
数字化变电站的线路差动保护相对于传统的光纤差动保护而言具有很多优点,限于篇幅,对其中的理论分析和实验结果不一一例举。
1、应用电子式互感器的线路差动保护因无饱和,区外故障时,穿越性电流引起的不平衡电流小,不会出现区外故障误动,提高了差动保护的可靠性。
2、应用电子式互感器的线路差动保护整定的差流门槛低,制动系数取值小,提高了差动保护的灵敏度。
3、电子式互感器不饱和,线性度好。除采用传统的相量差动外,应用采样值差动,相关差动可提高差动保护的动作速度。
(三)开入开出处理
数字化变电站的光纤纵差保护,开入量来源分为3类,包括:
1、投退型压板开入,包括差动保护投退、距离保护投退以及闭锁重合闸等。此类开入直接从保护屏柜获得,采用开入量采集获得。
2、开关的运行状态,包括分相的TWJ(跳位机)、断路器合闸压力低等。此类开入量信息由智能操作箱(或智能断路器)采集。通信协议为IEC61850-8-1标准的GOOSE协议,获得断路器的运行状态。
3、屏柜间的闭锁信号,包括远传和远跳信息。数字化变电站中,母差的动作信号可通过智能操作箱发给线路保护,也可由母差保护直接传给线路保护,这2种方式理论上均可实现。
(四)与其他设备配合
光纤纵差保护配合的其他设各包括智能操作箱、母差保护以及稳定控制装置等。光纤纵差保护通过过程层间隔局域网与智能操作箱/断路器通信,通信协议为IEC61850-8-1标准的GOOSE协议。再通过光纤进行双侧通讯,对两侧的电气量进行比较。而一般的差动保护主要比较两侧的电流差,用的是控制电缆形成差流回路,为防止CT二次回路负载太大,差流回路的电缆不可能很长。但光纤差动不存在这个局限性。光纤差动保护目前一般应用在很重要的线路中作为主保护,并且可以保护线路的全长。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。