前言
本文说明IEEE1588在一个分散运动控制系统中的应用,目前的解决方案依靠分散运动部件对时间同步的专门实现。随着IEEE1588的出现,可以开发一种在标准网络(如以太网)上使用商用技术的运动控制解决方案。本文要说明在一个网络范例内IEEE1588和运动的基本操作。
分散运动控制要求系统节点之间紧密地同步,通常这要求在系统内时钟间的波动是微秒数量级。更高性能的应用驱动将这个性能提高到几分一微秒范围。当前的解决方案是使用适当的网络和接口部件达到使分散系统内节点间的紧密同步。定制的接口卡控制整个系统时钟的分配和同步以及控制数据的定时传送。
IEEE1588时间协议提供分布网络上的标准化的同步机制,通过使用IEEE1588协议就可在标准网络上用标准化的解决方案取代专用解决方案。就可用现成的部件代替专用的网络接口部件。
现使用IEEE1588协议和以太网实现一个简单的分布运动控制系统,用以演示这个原理。
一、以太网简介
以太网(Ethernet)指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带局域网规范,是当今现有局域网采用的通用的通信协议标准。
以太网可以采用多种连接介质,包括同轴缆、双绞线和光纤等。其中双绞线多用于从主机到集线器或交换机的连接,而光纤则主要用于交换机间的级联和交换机到路由器间的点到点链路上。同轴缆作为早期的主要连接介质已经逐渐趋于淘汰。
以太网采用带冲突检测的载波帧听多路访问(CSMA/CD)机制。以太网中节点都可以看到在网络中发送的所有信息,因此,我们说以太网是一种广播网络。
二、IEEE1588协议简介
以太网在1985年成为IEEE802.3标准后,在1995年将数据传输速度从10Mb/s提高到100Mb/s的过程中,计算机和网络业界也在致力于解决以太网的定时同步能力不足的问题,开发出一种软件方式的网络时间协议(NTP),提高各网络设备之间的定时同步能力。1992年NTP版本的同步准确度可以达到200μs,但是仍然不能满足测量仪器和工业控制所需的准确度。为了解决测量和控制应用的分布网络定时同步的需要,具有共同利益的信息技术、自动控制、人工智能、测试测量的工程技术人员在2000年底倡议成立网络精密时钟同步委员会,2001年中获得IEEE仪器和测量委员会美国标准技术研究所(NIST)的支持,该委员会起草的规范在2002年底获得IEEE标准委员会通过作为IEEE1588标准。
IEEE1588的全称是“网络测量和控制系统的精密时钟同步协议标准”,IEEE1588标准的草案基础来自惠普公司的1990至1998年的有关成果,换句语说,安捷伦科技对IEEE1588标准作出重要贡献。安捷伦实验室的资深研究员John Eidson被网络业界视为,他的“IEEE1588在测试和测量系统的应用”,以及“IEEE1588:在测控和通信的应用”两篇论文对IEEE1588协议有精辟和全面的介绍。IEEE1588协议是通用的提升网络系统定时同步能力的规范,在起草过程中主要参考以太网来编制,使分布式通信网络能够具有严格的定时同步,并且应用于工业自动化系统。基本构思是通过硬件和软件将网络设备(客户机)的内时钟与主控机的主时钟实现同步,提供同步建立时间小于10μs的运用,与未执行IEEE1588协议的以太网延迟时间1,000μs相比,整个网络的定时同步指标有显着的改善。
IEEE1588的特点:
·早期的网络时间协议(NTP)只有软件,而IEEE1588既使用软件,亦同时使用硬件和软件配合,获得更的定时同步;
·GPIB总线没有同步时钟传送,依靠并行电缆和限制电缆长度(每器件距离)不超过5m来保证延迟小于30μs;
·GPIB的数据线与控制线是分开的,VXI和PXI两种总线分别在VME和PCI计算机总线上扩展,都要增加时钟线。IEEE1588无需额外的时钟线,仍然使用原来以太网的数据线传送时钟信号,使组网连接简化和降低成本;
·时钟振荡器随时间产生漂移,需要标准授时系统作校准,校准过程要缩短和安全可靠。目前常用的有GPS(定位系统)和IRIG?B(国际通用时间格式码),IRIG?B每秒发送一个帧脉冲和10MHz基准时钟,实现主控机/客户机的时钟同步。IEEE1588采用时间分布机制和时间调度概念,客户机可使用普通振荡器,通过软件调度与主控机的主时钟保持同步,过程简单可靠,节约大量时钟电缆;
三、采用IEEE1588协议的意义
采用IEEE1588协议 的以太网,解决了通用以太网延迟时间长和同步能力差的瓶颈,显然在测量仪器系统的应用中将发挥更大作用。事实上,以太网的仪器扩展接口LXI就是以采用IEEE1588协议的以太网作为骨干的仪器应用,再配备测量仪器系统所需的其它条件,组成吸收了GPIB到VXI和PXI的特点而构建的新一代测量仪器接口。
四、范例运动系统
范例运动系统由三个控制器组成,每个控制器通过一个SERCOS适配器连接一个驱动器。SERCOS是连接数字驱动器的工业标准。所有的运动节点都用以太网卡连接到标准的以太网。
调节器内的“运动计划器”管理每个驱动器的位置信息,以控制点动、移动、和联动操作。每个驱动器作为一个运动轴,其中一个轴是主轴,其它两个为从动轴。每个从动轴都与主轴以1:1的比率联动。连接到主轴的控制器以一定时间间隔向连接到从动轴的控制器发送位置基准。
在系统内所有节点的时钟是同步的,它使用IEEE1588协议达到以太网的时钟同步。在底板上的时钟同步是用先与IEEE1588的专用协议实现的。
五、网络时钟同步
网络时钟同步是在以太网适配卡上实现的,这个适配卡包含一个FPGA硬件辅助电路,用于对进入和输出的IEEE1588协议报文打上时间印记。这个FPGA包含一个64位,每片25纳秒的高分辨率的可调谐时钟。
1588协议运行在一个50MHz PowerPC CPU上,1588代码和按1588协议的规定的FPGA交互作用使从站的时间与子网上与此相关的主站时钟同步。调谐算法在每个1588同步刷新周期调节这个FPGA可调谐时钟的频率。
这个适配器也包含一个连接底版的接口芯片,底版芯片的时钟与1588时钟同步。在这个适配器上的底版接口作为主时钟,在底版上的其它时钟都与这个适配器上的主时钟同步。底版时钟与1588时钟的同步使用一个简单的算法。这个适配器表示一个1588边界时钟节点而底版时钟划为“外部”时钟。
六、运动的同步
基本的运动控制要求在一个节点的运动任务的运行要与其它所有节点同步。节点之间的所有事务都建立在同步刷新周期基础上。对控制器与传动和控制器与控制器之间的两种事务是相同的。
控制器对驱动的事务:在周期的开始控制器发送插值位置刷新每个驱动器,驱动器使用这个位置刷新值控制电机的闭环位置和速度,每台驱动器向控制器返回它的实际位置,控制器计算一个新位置并周期重复,这个操作持续一个位置刷新周期。
控制器对控制器的事务:在周期的开始,主轴控制器向每个从动轴发送位置基准,每个从动轴的控制器用这个位置基准计划本轴的运动。
为了同步整个系统的运动,运动任务和位置的刷新要与1588时钟同步,FPGA内的一个小电路提供对CPU的周期中断来触发这个位置刷新周期。这个电路将一个装入目标寄存器的时间与当前的1588时钟时间比较,在当前时间与目标时间符合时产生一个中断。在这个中断子程序内,CPU还会装入一个新的目标时间,它等于当前目标时间加上周期时间,然后重复这个过程。周期时间和相位是在节点配置过程中设置的。
七、IEEE1588的实现
IEEE1588协议是一个运行在适配器上的C/C++工具,大多数IEEE1588协议的实现包括同步,诊断,延时请求,延时响应和报文管理。1588引导协议用于在启动时加快时间从站的时钟同步。实现8个同步报文的引导。
这里未提供“主站”算法,本系统使用“推荐”主站选择方法决定子网络的主时钟。在启动时从站时钟无限期地收听主时钟。从时钟永远不会成为主时钟。也不会任命一个以上“推荐”主站。
为主时钟完整性的监视提供某些支持,如果一个从时钟发现失去主时钟,它将停止它的底版时钟,这将引起SERCOS适配器关闭SERCOS环路,并且所有运动停止。
八、输出同步
在范例应用中需要根据主轴的位置地接通或断开一个输出。用这个输出触发一个选通灯,照亮所有三个轴的相位。为了达到的输出闸门,使用一个特别的输出组件,它的时钟与系统中的其余时钟同步,由控制器内的运动计划器向这个组件发送一个输出值,这个值带着时间标记指示释放输出或停止输出的时间。输出组件使用先前说明过的任务同步电路管理输出的“定时”以达到的输出时间。
九、主时钟是GPS
GPS网络时钟以GPS信号作为时间源,同时可选北斗、CDMA、B码等时间源,对时达30nS.GPS网络时钟采用表面贴装技术生产,以高速芯片进行控制,具有高、稳定性好、功能强、无积累误差、不受地域气候等环境条件限制、性价比高、操作简单、免维护等特点,适合无人值守。
GPS网络时钟参考源是一款高性能GPS同步时钟参考源,内置低相位噪声、低频率漂移高稳定度的恒温晶振OCXO和高授时型GPS接收机,采用大规模集成电路和独特的GPS频率测控技术,产生并发送稳定的时间(1PPS)和频率信号(10MHz频率输出准确度<1x10-12),为可以为数字电视广播领域单频网适配器、上变频器、发射机、复用器、精密偏置激励器等设备提供高的时间和频率参考信号。
GPS网络时钟的特点:
1、1pps信号与10MHz信号相位一致
2、高效的智能保持算法
3、高准确度,24小时平均值优于1 x10-12
4、液晶和指示灯智能显示
5、多路10MHz和1PPS信号输出
6、高性能工业级元器件,稳定可靠,MTBF>80000小时
本运动系统范例的启动时间缺省为时间为0的UTC时间。对运动系统通常不需要时间,但对一些明显的事件如故障条件,时间标记可能很有用处。所以这里集成了一个定位系统(GPS)接口,用于提供的UTC时间源。并用作系统的主时钟。这个接口集成在以太网适配器模块上,适配器上的算法从GPS接收器接收“秒脉冲”和UTC刷新,并调节它的本地时钟维持与GPS的同步。
十、总结
IEEE1588协议在以太网分布运动系统的应用例子是可靠和的应用。硬件辅助电路提供的主时钟和从时钟之间的起伏不大于200纳秒。当使用GPS作为主时间基准时,在从时钟的累计波动为500纳秒。如果耒自GPS接收器的秒脉冲信号的边沿不清晰,还会产生附加的波动。
本例子展示的是一个相对较小的系统,还需要更大的范例和在各种负载条件下进行测试。 这是开发CIP Sync同步原理工作中的结果。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。