Wi-Fi收发器的电源布线、电源旁路和接地技术

时间:2011-08-29

  Wi-Fi是一种可以将个人电脑、手持设备(如PDA、手机)等终端以无线方式互相连接的技术。Wi-Fi是一个无线网路通信技术的品牌,由Wi-Fi联盟(Wi-Fi Alliance)所持有。目的是改善基于IEEE 802.11标准的无线网路产品之间的互通性。现时一般人会把Wi-Fi及IEEE 802.11混为一谈。甚至把Wi-Fi等同于无线网际网路。

  Wi-Fi 原先是无线保真的缩写,Wi-Fi 的英文全称为wireless fidelity,在无线局域网的范畴是指“无线相容性”,实质上是一种商业,同时也是一种无线联网的技术,以前通过网线连接电脑,而现在则是通过无线电波来连网;常见的就是一个无线路由器,那么在这个无线路由器的电波覆盖的有效范围都可以采用WIFI连接方式进行联网,如果无线路由器连接了一条ADSL线路或者别的上网线路,则又被称为“热点”。

  射频(RF)电路的电路板布局应在理解电路板结构、电源布线和接地基本原则的基础上进行。本文着重讨论了有关PLL杂散信号抑制的方法。为便于说明问题,本文以MAX2827 802.11a/g收发器的PCB布局作为参考设计。

一:电源布线和电源旁路的基本原则

  设计RF电路时,电源电路的设计和电路板布局常常被留到高频信号通路的设计完成之后。对于没有经过深思熟虑的设计,电路周围的电源电压很容易产生错误的输出和噪声,从而对RF电路的系统性能产生负面影响。合理分配PCB的板层、采用星形拓扑的VCC引线,并在VCC引脚加上适当的去耦电容,将有助于改善系统的性能,获得指标。

  合理的PCB层分配便于简化后续的布线处理,对于一个四层PCB (WLAN中常用的电路板),在大多数应用中用电路板的顶层放置元器件和RF引线,第二层作为系统地,电源部分放置在第三层,任何信号线都可以分布在第四层。第二层采用不受干扰的地平面布局对于建立阻抗受控的RF信号通路非常必要,还便于获得尽可能短的地环路,为层和第三层提供高度的电气隔离,使得两层之间的耦合。

  大面积的电源层能够使VCC布线变得轻松,但是,这种结构常常是导致系统性能恶化的导火索,在一个较大平面上把所有电源引线接在一起将无法避免引脚之间的噪声传输。图1给出了星形连接的VCC布线方案,该图取自MAX2826 IEEE 802.11a/g收发器的评估板。图中建立了一个主VCC节点,从该点引出不同分支的电源线,为RF IC的电源引脚供电。另外,每条引线还具有一定的寄生电感,这恰好是我们所希望的,它有助于滤除电源线上的高频噪声。

图1. 星形拓扑VCC布线


  使用星形拓扑VCC引线时,还有必要采取适当的电源去耦,而去耦电容存在一定的寄生电感。事实上,电容等效为一个串联的RLC电路,如图2所示,电容在低频段起主导作用,但在自激振荡频率(SRF) 之后,电容的阻抗将呈现出电感性。图3给出了不同容值下的典型S11参数,从这些曲线可以清楚地看出它们的SRF,还可以看出电容越大,在较低频率处所提供的去耦性能越好(所呈现的阻抗越低)。

图2. 电容器的等效电路

图3. 不同频率下的电容器阻抗变化

  在VCC星形拓扑的主节点处放置一个大容量的电容器,如2.2μF。该电容具有较低的SRF,对于消除低频噪声、建立稳定的直流电压很有效。IC的每个电源引脚需要一个低容量的电容器(如10nF),用来滤除可能耦合到电源线上的高频噪声。

  良好的电源去耦技术与严谨的PCB布局、VCC引线(星形拓扑)相结合,能够为任何RF系统设计奠定稳固的基础。尽管实际设计中还会存在降低系统性能指标的其它因素,但是,拥有一个“无噪声”的电源是优化系统性能的基本要素。

二:RF接地和过孔设计的基本原则

  地层的布局和引线同样是WLAN电路板设计的关键,它们会直接影响到电路板的寄生参数,存在降低系统性能的隐患。RF电路设计中没有的接地方案,设计中可以通过几个途径达到满意的性能指标。如上所述,电路板的第二层通常作为地平面,层用于放置元件和RF引线。

  接地层确定后,将所有的信号地以短的路径连接到地层,通常用过孔将顶层的地线连接到地层,需要注意的是,过孔呈现为感性。过孔的物理模型如图4所示。图5所示为过孔的电气特性模型,其中Lvia为过孔电感,Cvia为过孔PCB焊盘的寄生电容。如果采用这里所讨论的地线布局技术,可以忽略寄生电容。还需注意的是,接地焊盘的不良焊接会引发同样的问题。除此之外,功率放大器的功耗也需要多个连接地层的过孔。

图4. 过孔的物理模型

 

图5. 过孔的电气模型

  滤除其它电路的噪声、抑制本地产生的噪声,从而消除级与级之间通过电源线的交叉干扰,这是VCC去耦带来的好处。如果去耦电容使用了同一接地过孔,由于过孔与地之间的电感效应,这些连接点的过孔将会承载来自两个电源的全部RF干扰,不仅丧失了去耦电容的功能,而且还为系统中的级间噪声耦合提供了另外一条通路。

  在本文第三部分的讨论中将会看到,PLL的实现在系统设计中总是面临巨大挑战,要想获得满意的杂散特性必须有良好的地线布局。目前,IC设计中将所有的PLL和VCO都集成到了芯片内部,大多数PLL都利用数字电流电荷泵输出通过一个环路滤波器控制VCO。第三个电容(对于三阶滤波器)应该直接与VCO的地层连接,以避免控制电压随数字电流浮动。如果违背这些原则,将会导致相当大的杂散成分。

  图6所示为PCB布线的一个范例,在接地焊盘上有许多接地过孔,允许每个VCC去耦电容有其独立的接地过孔。方框内的电路是PLL环路滤波器,个电容直接与GND_CP相连,第二个电容(与一个R串联)旋转180度,返回到相同的GND_CP,第三个电容则与GND_VCO相连。这种接地方案可以获得较高的系统性能。

图6. MAX2827参考设计板上PLL滤波器元件布置和接地示例


三:通过适当的电源旁路和接地来抑制PLL杂散信号

  满足802.11a/b/g系统发送频谱模板的要求是设计过程中的一个难点,必须对线性指标和功耗进行平衡,并留出一定裕量,确保在维持足够的发射功率的前提下符合IEEE和FCC规范。IEEE 802.11g系统在天线端所要求的典型输出功率为+15dBm,频率偏差20MHz时为-28dBr。

  然而,并非所有引发ACPR的问题都归咎于器件的线性特性,一个很好的例证是:在经过一系列的调节、对功率放大器和PA驱动器(对ACPR起主要作用的两个因素)进行优化后,WLAN发送器的邻道特性还是无法达到预期的指标。这时,需要注意来自发送器锁相环本振(LO)的杂散信号同样会使ACPR性能变差。LO的杂散信号会与被调制的基带信号混频,混频后的成分将沿着预期的信号通道进行放大。

图7. 802.11a/b/g频谱模板和杂散造成的性能下降

  上述讨论提出了另外一个问题,即如何有效地将PLL杂散成分限制在一定的范围内,使其不对发射频谱产生影响。一旦发现了杂散成分,首先想到的方案就是将PLL环路滤波器的带宽变窄,以便衰减杂散信号的幅度。这种方法在极少数的情况下是有效的,但它存在一些潜在问题。

  图8给出了一种假设情况,假设设计中采用了一个具有20MHz相对频率的N分频合成器,如果环路滤波器是二阶的,截止频率为200kHz,滚降速率通常为40dB/十倍频程,在20MHz频点可以获得80dB的衰减。压缩环路滤波器的带宽将不会改善杂散特性,反而提高了PLL锁相时间,对系统产生明显的负面影响。

图8. 简化的PLL滤波器渐近线,相应的转角频率和杂散位置

  经验证明,抑制PLL杂散的有效途径是合理的接地、电源布局和去耦技术,本文讨论的布线原则是减小PLL杂散分量的良好设计开端。考虑到电荷泵中存在较大的电流变化,采用星形拓扑非常必要。如果没有足够的隔离,电流脉冲产生的噪声会耦合到VCO电源,对VCO频率进行调制,通常称为“VCO牵引”。

  图9提供了一个由于不合理的VCO电源去耦方案所产生的结果,电源纹波表明正是电荷泵的开关效应导致电源线上的强干扰。值得庆幸的是,这种强干扰可以通过增加旁路电容得到有效抑制。图10显示的是在电路改变后,在同一点的测量结果。

图9. 不合理的VCC_VCO退耦测试结果

图10. 在VCO电源端增加旁路电容后减小了噪声。

  另外,如果电源布线不合理,例如VCO的电源引线恰好位于电荷泵电源的下面,可以在VCO电源上观察到同样的噪声,所产生的杂散信号足以影响到ACPR特性。这种情况下,需要考察一下PCB布线,重新布置VCO的电源引线,将有效改善杂散特性,达到规范所要求的指标。 


  
上一篇:介绍当前利用固态存储补充存储系统的4种方式
下一篇:分享企业移动盛宴

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料