分析后摩尔时代骨干网的挑战和发展趋势

时间:2011-08-29

  后摩尔时代的“骨干网”通常是用于描述大型网络结构时经常使用的词语,描述网络结构,主要是要看者清楚网络拓扑结构,而非具体使用的传输方式或协议。骨干网一般都是广域网:作用范围几十到几千公里。骨干网是由多种传输方式,多种协议组合构成的。

  目前我国拥有九大骨干网:中国公用计算机互联网(CHINANET)、中国金桥信息网(CHINAGBN)、中国联通计算机互联网 (UNINET)、中国网通公用互联网(CNCNET)、中国移动互联网(CMNET)、中国教育和科研计算机网(CERNET)、中国科技网 (CSTNET)、中国长城网(CGWNET)、中国国际经济贸易互联网(CIETNET)。

  流量激增,扩容压力大

  视频等宽带业务的开展,使用户对于互联网带宽的需求持续增长,骨干网容量的压力日益显着。同时,每兆比特的ARPU值不断下降已成为趋势,而一部分互联网应用甚至分流现有电信业务的利润,这让运营商无法有足够的投资动力。

  如何减少骨干网的扩容压力呢?提升节点能力、优化网络架构、对网络进行多层协同规划,或许是可行的措施和选择。

  提升节点能力

  传统且直接的网络扩容方式,是升级端口速率、提高设备容量。目前40G已经开始商用,随着业务流量的继续增长,100G也逐渐成为业界关注的热点。上述的扩容方式会导致节点容量压力大、成本高。因此,运营商除了提升节点能力之外,还要从网络架构优化的角度,考虑扩大骨干网容量。

  优化网络架构

  传统的层次化网络是一种比较经济的建网模式。网络流量小的时候,路由器可以通过统计复用的方式,实现流量的收敛,并解决全互联带来的扩展性问题。然而随着网络流量的增长,路由器面临频繁扩容的压力,从而制约网络的发展。而且在骨干网中,有50%以上的流量是中转流量。该流量经过多次路由器转发,消耗了大量昂贵的路由器端口,层次化的建网模式将不再经济。

  三层网络架构采用层次化模型设计,即将复杂的网络设计分成几个层次,每个层次着重于某些特定的功能,这样就能够使一个复杂的大问题变成许多简单的小问题。三层网络架构设计的网络有三个层次:层(网络的高速交换主干)、汇聚层(提供基于策略的连接)、接入层    (将工作站接入网络)。

  层:层是网络的高速交换主干,对整个网络的连通起到至关重要的作用。层应该具有如下几个特性:可靠性、高效性、冗余性、容错性、可管理性、适应性、低延时性等。在层中,应该采用高带宽的千兆以上交换机。因为层是网络的枢纽中心,重要性突出。层设备采用双机冗余热备份是非常必要的,也可以使用负载均衡功能,来改善网络性能。

  汇聚层:汇聚层是网络接入层和层的“中介”,就是在工作站接入层前先做汇聚,以减轻层设备的负荷。汇聚层具有实施策略、安全、工作组接入、虚拟局域网(VLAN)之间的路由、源地址或目的地址过滤等多种功能。在汇聚层中,应该采用支持三层交换技术和VLAN的交换机,以达到网络隔离和分段的目的。   接入层:接入层向本地网段提供工作站接入。在接入层中,减少同一网段的工作站数量,能够向工作组提供高速带宽。接入层可以选择不支持VLAN和三层交换技术的普通交换机。

  打个比方,在层次化网络中,业务流量在路由器上是逐跳转发的,每个报文的转发就像十字路口的车辆按照红绿灯指示调度,流量小的时候有较好的性能。而路由器之间通过光层建立的直连链路,就像是立交桥,没有红绿灯的存在,可以实现大颗粒业务的快速调度,即使流量大,也能保证较好的性能。

  路由器之间直连,简化了网络架构,减少了扩容压力,节省了互联成本,增强了网络的扩展性,并减小了网络时延及抖动,提高了业务质量。

  以中国电信的ChinaNet骨干网为例,将其流量大的接入节点(比如湖南)逐步提升为类点的扁平化进程已经显现出明显的经济效益。2010年已完成从9个节点到15个节点的扩展,未来将会扩展更多的类核节点,逐渐向扁平化的骨干网演进。

  多层协同规划

  流量的增长要求网络向扁平化演进,如何有步骤高效地演进呢?

  ChinaNet骨干网的扁平化是基于人的观测和经验。为了提高准确性和效率,业界目前关注通过多层规划的方式实现网络扁平化部署。运营商在网络部署或网络优化时,根据多层规划工具的结果,在路由器之间建立直连链路。

  传统的网络规划是逐层规划,路由器网络和传输网络是分别规划的。由于互通的信息有限,导致全网规划的结果不是经济的。另外,有些运营商认为,在网络中应尽量减少昂贵的路由器端口的使用。一方面,是由于路由器的成本比较高;另一方面,并不是所有的流量都需要经过路由器处理,通过在边缘路由器之间建立直达链路,可以减少路由器的端口,从而节省设备成本。

  多层规划就是把路由器网络和传输网络同时进行规划,这样可以在网络中合理地配置资源,小颗粒业务通过路由器调度,利用统计复用提升效率,比基于经验的方式更准确、更高效,并支持网络的逐步演进。同时,多层规划工具能够有效地支撑整网TCO分析,并通过增量规划简化扩容的复杂度。

  以某运营商的骨干网为例。该骨干网由106个节点构成,其中包括20个节点,86个汇接节点。假设节点间的波长带宽都是10G,业务矩阵按照每年60%递增速度考虑,随着流量的增加,扁平化建网和层次化建网的成本差越来越大,到第八年时,扁平化建网的成本只有层次化建网的61.62%。通过多层规划工具,原来需要几个月才能完成的规划任务可以在几天内完成。

  由于网络规划有一定的周期,而数据业务具有很强的突发性,因此网络存在动态规划的需求。动态规划需要增加流量检测、多层PCE、Bypass服务器等,存在大量标准化的工作,还比较遥远。而结合流量检测和网管操作的半自动网络扁平化方式,是一种比较可行的选择。

  故障波及范围广,影响客户忠诚度

  40G已经开始商用,40G链路上承载着成千上万的业务,链路故障将影响众多的业务,客户的忠诚度由此大打折扣。如何提升骨干网的可靠性,是运营商面临的又一挑战。

  随着路由器故障恢复和保护技术的不断发展,理论上路由器已能实现当网络发生故障时对业务的保护。但是在实际部署时,由于传输资源受限而难以配置快速保护恢复的路径,并且在传输链路故障时,会引起路由层面的大量告警及路由振荡,对路由器冲击很大。

  ASON通过光层的快速重路由可以解决传送网的多点故障,但是缺少和路由器的配合,可能存在保护不成功或多重保护的情况。在进行多层的网络规划时,通过共享风险链路组的约束,可以提高骨干网的可靠性。

  运维难,海量告警故障难排除

  假设一个运营商每天在波分层面的告警有6千多个,而到了路由器层面,告警将成倍递增,变成2万多个。这是因为一个传送层的告警通常会在IP层产生10倍以上的告警,而且IP网和传送网是由不同的部门管理维护,很难知道IP层和传送层之间的承载关系,以及IP层和传送层之间告警的关联关系。通过IP和光层的协同运维,以及一个统一的数据库,可以方便地维护IP和光层的承载关系及告警的关联关系,能够屏蔽掉大量的衍生告警,快速地找到根源告警,将故障定位时间由几个小时缩短到几分钟。

  通过统一网管及GMPLS UNI,又可以实现业务的快速部署,将业务开通的时间由数月缩短到几天,从而更快地响应客户、赢得市场。

  综上所述,在流量以超摩尔定律增长的情况下,不仅需要提升单节点的能力,而且还要从网络架构的角度优化网络;在扁平化架构的趋势下,IP和光多层协同规划工具可以指导扁平化网络的部署,提升网络的效率,降低网络成本;而多层协同的保护和运维则大幅提升网络的可靠性和运维的效率,降低运维成本。因此IP和光在流量、保护、运维方面的协同,是应对后摩尔时代骨干网挑战的选择。

  新一代的宽带IP骨干网络,已不再是传统意义上的Internet,它需要在其骨干上运行比现在更多的业务。新的骨干网络结构必须能够提供包括语音、数据、视频等多种服务。因此,就要求有一定的服务质量(QoS),这个服务质量是指要求在时间延迟和传输误码率两方面要得到高质量的保证。在网络中就必须能够提供业务流控制的手段和流量管理的方法。

  对于宽带骨干网来说,追求限度地利用资源、降低成本、提高效率是网络建设、网络运营的根本要求。所以在网络的高层需要选择高效的组网技术,充分发挥物理资源。流量管理技术能够在发生拥塞的网络中,保证各个业务的服务质量。

 



  
上一篇:轻松学PIC之数码管
下一篇:浅谈WDM-PON组网方案

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料