伴随着测试需求的多样化和复杂化,以软件为的虚拟仪器测试策略正逐渐成为行业主流的技术,并得到广泛的应用,在提高效率的同时降低测试成本。在新兴商业技术不断涌现的今天和未来,测试测量行业正呈现出五个重要的发展方向。
趋势一:软件定义的仪器系统成为主流
如今的电子产品(像iPhone和Wii等)已越来越依重于软件去定义产品的功能。同样的,在产品设计和客户需求日益复杂的今天,用于测试测量的仪器系统也朝着以软件为的模块化方向发展,使得用户能够更快更灵活的将测试集成到设计过程中去,进一步减少了开发时间。
通过软件定义模块化硬件的功能,用户可以快速实现不同的测试功能,并应用定制数据分析算法和创建自定义的用户界面。相比于传统仪器固定的功能限制和只是“测试结果”的呈现,以软件为的模块化仪器系统能够赋予用户更多的主动权,甚至将自主的知识产权(IP)应用到测试系统中。(见图1)
在业界,美国国防部在2002年向国会提交的中指出下一代测试系统(NxTest)必须是基于现成可用商业技术(COTS)的模块化的硬件,并同时强调了软件的能动作用。的合成仪器(Synthetic Instrumentation)的概念也无非是经过重新包装的虚拟仪器技术,将软件的开放性和硬件的模块化重新结合在了一起。
《电子系统设计》杂志的编辑Louis Frenzel先生在他近关于测试行业趋势的文章(Synthetic Instrumentation No Longer A Test Case)中也再次肯定了虚拟仪器技术对于测试测量行业的革新作用以及软件定义仪器的发展方向。
图1:以软件为的模块化系统参考架构。
趋势二:多核/并行测试带来机遇和挑战
多核时代的来临已成为不可避免的发展趋势,双核乃至八核的商用PC现在已随处可见。得益于PC架构的软件定义的仪器,用户可以在时间享受到多核处理器为自动化测试应用带来的巨大性能提升。
要充分发挥多核的性能优势,就必须创建多线程的应用程序,例如我们可以将自动化测试程序的数据采集、数据分析、数据记录乃至用户界面部分创建不同的线程,从而分配到不同的核上并行的运行。不过,这样并行的开发理念使得习惯于传统串行开发方式的工程师难以适应,尤其是当核的数目越来越多。
挑战和机遇往往是并存的,作为图形化语言的代表,LabVIEW在设计当初就考虑到了并行处理的需求,从LabVIEW 5.0开始支持多线程到现在已有10多年的历史。可以毫不夸张地说,天生并行的LabVIEW就是这样一种驰骋多核技术时代的编程语言,通过自动的程序多线程化(见图2),开发人员可以无需考虑底层的实现机制,就可以高效地享用多核技术所带来的益处。
无论是欧南天文台极大望远镜高达2700万次乘加运算的镜面控制,到Tokamak核聚变装置的实时处理运算,还是NASA的飞机安全性测试和TORC汽车控制快速原型设计,LabVIEW多核技术都为这些应用带来了巨大的性能和吞吐量的提升,随着多核技术的进一步发展,提升的幅度将更为可观。
图2:LabVIEW中的自动多线程和并行的数据流编程。
趋势三:基于FPGA的自定义仪器将更为流行
以软件为的模块化架构以其灵活性及可自定义等特性被工程师广泛应用。但新一代的测试系统要求硬件也应具有可重配置能力,这种硬件通常是现场可编程门阵列FPGA。为了使FPGA发挥更大作用,必须让工程师能够方便地对其编程。设计工具的兴起正在改变FPGA编程的规则,使用新的技术能将图形化代码乃至C语言代码转化成数字硬件,方便工程师实现FPGA应用。NI LabVIEW能够结合处理器和FPGA的各自优势,快速实现主处理器和FPGA的处理任务。这种创新的结构能够满足传统方法所无法实现的应用挑战,比如,工程师可以将自己的处理算法部署到仪器中所嵌入的FPGA上,实时完成被测件合格/失败测试,且不占用主处理器CPU资源。
基于PFGA的可重复配置的仪器在国防和航空航天工业中已有不少应用,并且在电信、自动化、医学设备以及消费电子等领域同样具有巨大的潜力。
趋势四:无线标准测试的爆炸性增长
近年来无线通信标准的发展可谓是日新月异,从2000年前只有四五种的无线标准到现在众多新标准如雨后春笋般涌现。越来越多的消费电子产品和工业产品都或多或少的集成了无线通信的功能,像苹果公司的3G版iPhone手机,更是同时集成了UMTS, HSDPA, GSM, EDGE, Wi-Fi, GPS和蓝牙等多种的无线标准。这些都给无线技术的开发和测试带来了巨大的挑战,测试技术如何跟上无线技术的发展成为工程师面临的难题。通常传统射频仪器的购买周期是5至7年,而新标准和新技术的推出周期却是每两年一轮,购买的射频测试设备由于其固件和功能的限定通常难以跟上新标准的发展速度。
无线技术变革已经对测量测试行业产生巨大影响,其中两个关键技术趋势尤为突出,其一是MIMO技术,其二便是多种无线标准在同一系统中的集成。这两个技术趋势都要求射频测量系统能够实现并行测试,这就需要可配置的多信道射频测试系统。这样的系统可以在同一设备上并行测试多个无线设备或测试多个通信标准。对于MIMO系统,多通道之间的相位同步也十分重要。目前,基于PXI的模块化软件无线电平台针对这样的需求已有一些解决方案相应推出。
NI LabVIEW和PXI RF平台就是这样一个软件无线电的测试平台,多年来已经成为工程师和科学家们开发无线标准和测试无线应用的必备工具。德州大学奥斯汀分校的师生基于NI的软件无线电平台,在短短6周时间内开发出MIMO-OFDM 4G的系统原型;成都华日通信公司(国内无线电频谱管理设备主要供应商)利用NI PXI矢量信号分析仪和LabVIEW开发了带有自主产权的HR-100宽带无线电接收机和监测系统,已广泛应用于国内的频谱监测和信号定向领域。聚星仪器(NI大陆地区系统联盟商)也开发出了支持C1G2 RFID标准全部指令的测试设备,并实现了与RFID标签微秒级的实时通信。
图3:基于LabVIEW和PXI的软件无线电测试平台。
趋势五:协议感知(Protocol-Aware)ATE将影响半导体的测试
如今的半导体器件变得愈加的复杂,的片上系统(SoC)和封装系统(SiP)相比典型的基于矢量的器件测试而言,需要更为复杂的系统级的功能测试。现在器件的功能也不再是通过简单的并行数字接口实现,而是更多的依赖于高速串行总线和无线协议进行输出,这就要求测试设备和器件之间能够在指定的时钟周期内完成高速的激励和响应测试。
在2007国际测试会议上,Andrew Evans发表了一篇名为“The New ATE - Protocol Aware”的论文,在这篇论文中,协议感知出现了。协议感知是一种模仿器件真实使用环境(包括外围接口)的方法,按照器件期望的使用方式,进行有针对性的器件功能测试和验证。
国际半导体测试协会(STC)和新近成立的半导体测试合作联盟(CAST)都在考虑为自动化测试厂商制定开放的测试架构以满足日益增加的半导体测试需求和降低测试成本。NI作为STC协会便携式测试仪器模块(PTIM)工作组的主席,正在致力于创建一种新的指南和标准,使得工程师能够将第三方的模块化测试仪器(如PXI)集成到传统的半导体ATE中,以实现更为灵活自定义、符合“协议感知”要求的半导体测试系统。
以上五方面的技术趋势和方法适用于所有公司——无论其所在行业,规模或化程度。紧跟技术前沿实现创新应用,是工程师不断努力的方向,了解并掌握这些创新型技术和方法,将有效优化测试过程且降低测试成本。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。