R&S CMW500功能强大的硬件方案不仅可以用于一致性测试、性能测试和互操作测试,还可以用于产品生命周期的后续阶段,为芯片片和无线设备制造商带来多重好处。
LSTIIOT测试场景
LSTI(LTE/SAE Trial Initiative,LTE/SAE测试联盟)为2007年5月由多家设备商和运营商发起的开放型组织,致力于验证LTE/SAE的技术能力,以加速LTE/SAE标准的成熟,并推动其商业化进程,目前已有包括12家运营商及27家设备提供商在内的39个成员。LSTI的工作介于标准化与商业部署之间,可分为概念验证、互操作、友好用户试验三个阶段。LSTI 已于2009年6月完成TD-LTE概念验证,所有测试结果均满足或超过3GPP及NGMN的需求。LSTI计划于2010年同步完成TDD及FDD的互操作及友好用户试验阶段。IODT是对LTE/SAE空中接口功能的一个子集进行的测试,是网络设备和终端设备之间互操作性测试的前期预备测试。LSTI在其测试规范中定义了每个测试场景。罗德与施瓦茨公司在2008年2月就加入成为了LSTI成员,开始参与编写这些测试场景。
罗德与施瓦茨公司提供的LTE
LTE是英文Long Term Evolution的缩写。LTE也被通俗的称为3.9G,具有100Mbps的数据能力,被视作从3G向4G演进的主流技术。LTE的研究,包含了一些普遍认为很重要的部分,如等待时间的减少、更高的用户数据速率、系统容量和覆盖的改善以及运营成本的降低。
LTE概念的提出意味着目标的确立,为了有一个清晰的技术发展路线,3GPP制定了明确的时间表。整个标准发展过程分为两个阶段,研究项目阶段和工作项目阶段。研究项目阶段预计在2006年年中结束,该阶段将主要完成对目标需求的定义,以及明确LTE的概念等;然后征集候选技术提案,并对技术提案进行评估,确定其是否符合目标需求。工作项目预计在2006年年中以前建立,并开始标准的建立。该阶段会对未来LTE的标准细节的方方面面展开讨论和起草,这个过程同以前3G标准在3GPP中的制定过程是一样的,这一过程将一直持续到2007年年中。整个过程相比3G标准的制定节奏明显加快,这也是考虑到市场的需求,随着宽带技术的不断创新,3GPP也将在短的时间内推出的技术。这给运营业带来了新的机遇,更新更快的业务可以在不远的将来得以实现,甚至完全可以和有线网络相媲美。
IODT测试场景和现场测试场景等测试用例,可以运行在R&SCMW500测试平台上。在实验室环境下进行IODT测试,可以为以后在LTE/SAE网络中的测试进行前期准备。在R&S CMW500进行IODT测试还具有以下优点:
·可以对网络参数进行方便设置
·对测试结果进行详细分析
·测试结果的可重复性
·用户可以对测试场景的源代码进行修改,满足一些特定的需求。
这些测试场景既可以运行在R&S CMW500协议测试仪上,也可以运行在R&SCMW-KP502虚拟测试环境上,可以对研发早期的纯软件协议栈进行测试。
LTE协议研发测试
R&S CMW500提供了两类编程界面来实现LTE研发阶段的协议测试。
底层应用编程界面LLAPI(R&SCMW-KP501)
基于LLAPI的测试场景直接控制LTE网络侧底层的协议栈。一些协议层,例如RLC,可以转换为透明层处理。这样就可以对底层协议层进行测试,从而可以在UE研发早期,甚至在不具备信令功能时就可以进行层1和层2的验证测试。
中间层应用编程界面MLAPI(R&SCMW-KP500)
MLAPI测试场景利用CMW500中RRC协议层的一个SAP服务接入点来进行信令测试。这个SAP主要进行空中接口端到端消息的传输交换。 RRC配置器自动配置底层协议层,并且保证在LTEUE和网络之间交互的信令消息的一致性。在对UE的整个协议栈进行测试时,建议使用MLAPI。这方面的应用覆盖了从高层信令测试-例如切换流程和inter-RAT流程,到端到端的IP应用测试。
下图图示了两种编程界面的差别,MLAPI场景使用了在LTE协议栈中实现了的RRC配置器做为编程界面,而LLAPI则直接控制单个的协议层。
RRC配置器可以确保LTE协议栈的一致性配置,并且也可以评估MLAPI测试场景和UE之间交互的消息。MLAPI测试场景只是包含了层3消息的发送和回应,而协议栈中的RRC配置器,控制并且配置了底层协议栈。R&SCMW-KT012消息编辑器可以方便的进行层3消息内容的编辑。只需要进行一个文件的编辑,就可以保持消息本身和协议栈配置之间的一致性。
由于协议消息内容保存为xml文件格式,它在MLAP测试场景运行时才载入使用,所以对消息进行配置修改后,不需要进行编译就可以使用。只要测试场景的动态回应不变,也就是保持不同消息类型的序列不变,那么就可以创建新的测试场景,而不需要修改C++的源代码。这使得新用户使用MLAPI进行测试变得很容易,甚至不需要任何C++的知识。
为了简化层3信令场景的产生,CMW500提供了一个C++的类库,以及一些LTE测试场景的例子(R&S CMW500-KF500)。C++类库中包含了RRC和NAS协议流程中状态机类需要的模块。下图图示了一个测试流程可以通过调用四个MLAPI的状态机来实现:UE注册,激活和去激活一个PDP数据连接,以及发起一个去附着流程。其中注册流程分为RRCconnectionsetup和 Attach两个流程,Attach流程又分为Authentica-tion和Security两个子流程。MLAPI状态机使用模块化的方式来构建,也就是说,在多个MLAPI状态机中使用的公共流程可以封装成单独的状态机。
由于可以把复杂的信令测试分解成不同模块,而且不需要重新编写所有的流程模块,因此使用MLAPI可以很快的实现复杂的信令测试,这对于MLAPI 用户来说是很有益的。而且MLAPI还具有下面一些优点:面向对象的编程可以确保C++源代码的结构很清晰;所有状态机都提供源代码,用户可以使用这些状态机作为他们自定义的状态机中的基本类;MLAPI状态机和协议消息都以XML文件格式提供。
LLAPI和MLAPI是CMW500测试场景框架中的不同组件,在单个测试场景中可以同时使用两者,从而同时使用两类接口的优点。例如,前面描述的UE注册到网络,分组数据服务的激活信令可以使用MLAPI来实现。而在下面的测试步骤中,可以使用LLAPI的功能来完成对RLC和MAC层的控制。下图图示了这类测试场景的结构:MLAPI前导测试,LLAPI测试主体,和MLAPI后续处理。这种方法可以节省时间,对于已经在其他测试中完成验证的信令,使用 MLAPI实现,而把测试主体关注在层1和层2测试功能的实现上。
罗德与施瓦茨公司LTE协议测试全方案
罗德与施瓦茨两人师从Esau教授,并于1931年自耶拿大学物理技术学院获得博士学位,由于对射频测量的极大兴趣,两人毕业后仍保持联系。 在正常工作之外,两位物理学家还不断地进行气体放电特性的实验,并于1932年共同研制出他们台测量仪器,波长从6至3600米的频率计。 首次通过一种新开发的用于射频的介电质材料进行了的测量。1933年罗德与施瓦茨公司(R&S公司)正式成立,总部位于德国,现在美国、中国、日本、新加坡、巴西和阿布扎比(阿联酋)都设有地区支持中心,业务遍及70多个国家。R&S进入中国以来,向中国市场提供了众多高、高科技、高质量的无线通信,测试测量产品和广播电视产品,为中国的科技发展作出了很大的贡献。其产品和解决方案在国家无线电管理委员会及监测中心、中国民航、广播电视单位、计量部门、产品质量检测单位以及各大研究机构和无线通信生产厂家均得到广泛应用。
MLAPI在R&SCRTU-W上已经使用,并且编写了超过1000个可用的R&D和IOT测试场景,这证明了其非凡的功能和潜力。在CMW500上,除了前面介绍的CMW-KF505IODT测试场景以外,目前LTE协议测试场景还有下面的软件包:
R&SCMW-KF500-LTE测试场景范例,LLAPI和MLAPI的测试场景范例,用于演示MLAPI功能结构和状态机类。
R&SCMW-KF502-LTE基本流程,LTERRC和NAS基本流程,包括attach,detach,EPSbearerconnectionsetup,GUTIreallocation,和trackingareaup-date等。
R&SCMW-KF503-EPS承载验证,进行不同无线承载配置的激活和验证。
R&SCMW-KF504-LTE移动性和切换流程,包括LTE内部的切换和移动性,频率内和频率间切换,邻小区的测量。
这些测试场景应用包括协议栈功能的集成和验证,UE不同软件版本之间进行比较测试。而和一些关键客户的紧密合作,保证了罗德与施瓦茨公司不同测试软件包的实际可操作性。
通过使用R&S CMW500宽带无线综合测试仪上的功能强大的LLAPI/MLAPI编程接口,移动终端制造商可自定义的LSTIIODT测试场景软件包,从而快速、有效进行LTE信令测试,加快完善LTE终端的协议一致性测试,早日推向市场。R&S CMW500的功能强大的硬件方案可以提供的频率高达6GHz,带宽为40MHz。它不仅可以用于一致性测试,性能测试和互操作测试,而且还把它的优点扩展到产品生命周期的后续阶段,从而可以给芯片和无线设备制造商在UMTSLTE协议一致性研发的各个阶段中带来多重好处。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。