简述心电信号采集原理及电路设计

时间:2011-08-29

  心电图指的是心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着心电图生物电的变化,通过心电描记器从体表引出多种形式的电位变化的图形(简称ECG)。心电图是心脏兴奋的发生、传播及恢复过程的客观指标。

  随着生活水平的提高,健康问题引起人们高度重视,尤其是对心脏疾病方面,因而从医院大型设备到便携式仪器,甚至各种远程诊断设备,都有飞跃发展,而所有心电设备的基础都是采集到心电信号。在便携式自动心电诊断系统的项目背景下,设计出便携式心电信号的采集电路。

1  心电图产生机理

  在人体内,窦房结发出兴奋,按一定途径和时程,依次传向心房和心室,引起整个心脏兴奋。因此,每个心动周期中,心脏各个部分兴奋过程中出现的生物电变化的方向、途径、次序和时间都有一定规律。这种生物电变化通过心脏周围的导电组织和体液反映到身体表面上,使身体各部位在每一心动周期中也都发生有规律的生物电变化,即心电位。

2  系统结构

  便携式心电监护仪的目标是具备自动诊断心脏疾病的功能,同时便于家庭和旅行使用。这里主要给出便携式心脏疾病自动诊断设备的前端部分,即信号采集和处理部分。心电信号在FPGA控制下,实现信号的数字化,以便后续进一步处理和存储,系统整体结构如图l所示。

a.JPG

3  采集心电信号

3.1  心电信号的特点

  正常心电信号的幅值范围为10 V~4 mV,典型值为1 mV。频率范围在0.05~100 Hz,而90%的频谱能量集中在0.25~35 Hz之间。在检测微弱的心电信号时还要注意到噪声的抑制。

  根据心电信号非常微弱的特点,采集心电信号的前置放大电路需要具备高输入阻抗、高共模抑制比、放大器低噪声和低漂移等方面性能。

  综合考虑以上要求,这里选用放大器为AD620。AD620的输入阻抗为10GΩ,增益为10时的共模抑制比为100dB,温度漂移O.6μV/℃。

3.2  导联系统

  从人体体表采集心电时,首先要考虑2个问题:一是电极的放置位置。二是电极与放大器连接形式。临床上为了统一和便于比较所获得的心电波形,对测定ECG的电极位置和与放大器的连接方式都做了统一规定,称为心电图的导联系统,常称导联。广泛认可的国际标准十二导联,分别为I、Ⅱ、Ⅲ、aVR、aVL、aVF、V1~V6。其中I、Ⅱ、Ⅲ导联为双极导联,其余为单极导联。

3.3  放大

  心电信号放大器选用AD620,它在输入阻抗、共模抑制比、低噪低漂移上具有出色的性能。另外,AD620采用差分放大,能够有效地抑制噪声。放大倍数不宜太大,因为在采集信号时可能产生电位波动和极化电压及其他噪声,给后续电路处理噪声带来不便,建议在7~lO倍。电路连接如图2所示。

b.JPG


3.4  滤波电路

  由于心电信号的频率在0.05~100 Hz,采集电路就需要设计滤波器除去该段频率以外的噪声频率。滤波电路主要由高通滤波、低通滤波和50Hz陷波器组成。为了达到理想的滤波效果,设计了二阶低通滤波器,如图2所示。

  对电路进行实际测试计算得到以下数据,如表1所示。表1中,衰减为电路测试数据,“Filterlab”为软件仿真的数据,从数据对比上看,实际计算数据和仿真数据基本一致。

c.JPG

  图3给出了二级有源滤波器的幅频曲线及相频曲线。其中曲线A为幅频曲线,曲线B为相频曲线。

3.5  陷波电路

  由于交流电的影响,在心电信号采集中,容易受50 Hz工频干扰的影响,为此设计了50 Hz陷波电路。该陷波电路采用双T带阻滤波。实现陷波器的难度在于参数选择和电路调试,另外一定要选择高的电阻电容,确保参数严格匹配。从波形图上看,在46 Hz频率以下的信号通过时,通过陷波电路的信号B与原信号A基本一致。无失真。

13z.jpg

13y.jpg


  图5分别为49 Hz、50 Hz频率信号通过陷波电路后,与原输入信号波形的比较。由图中可清楚地看到:当输入49 Hz信号时,输出信号衰减为原信号的0.35倍左右。当输入50Hz信号时,信号基本上衰减为零,因此能有效抑制50 Hz的工频干扰。

3.6  主放大电路

  为满足A/D转换器对信号幅度的要求,两级放大器共放大l 000倍左右,放大电路放大倍数为8倍,所以二级放大倍数设计为125倍。从整个电路集成度和器件性价比考虑,这里选用TL064。放大电路采用简单的反馈放大电路,调节电阻参数即可。

4  数字处理部分

4.1  A/D转换

  已放大的模拟信号要实现存储和显示,需要转化为数字信号,因此要完成A/D转换。A/D转换首先解决采样率和A/D转换器的选型。

  采样率,美国心脏学会推荐的采样率为500 Hz,但实际中不同应用有不同的采样率,一般在125~1 000 Hz之间,监护时多采用200 Hz或250 Hz,辅助分析时多用400~500 Hz,而心电HOLTER一般取125~200 Hz。采样为10 bit或12 bit。

  f.JPG

  通过表2和实际项目的要求,终确定使用MAXl97,其采样位数,转换速率,功耗,体积等方面均符合心电A/D转换的要求。

  控制模块使用VHDL语言编程实现,根据MAXl97的时序图,利用有限状态机的方法实现控制模块。

 

g.JPG


  图6是根据上述状态机VHDL语言实现后生成的图元符号及控制模块的仿真波形。从仿真波形上可以看出,该模块符合A/D转换器的时序要求,能在功能上实现对A/D转换器的控制,得到所需要的数字信号。

  A/D转换器的控制信号由FPGA提供。基于FPGA平台搭建一个A/D转换的控制模块。选择FPGA做控制平台,是由于FPGA有着丰富的可编程逻辑资源,利用这些资源可以实现心电设备中的控制存储、显示、按键、通信等其他模块。选择FPGA也是出于项目整体方案的考虑。

5  结束语

  在项目的要求下,通过分析心电信号的特点,从幅值,频率,噪声等各方面有针对性的设计了心电采集电路,并对每一环节都做了仿真和测试,上精简电路,满足便携式设备对体积的要求,同时保持较高的性能,能有效采集到心电信号。对采集到的心电信号,用FP-GA控制A/D转换模块,得到数字信号,以便后续的数字处理。
  

上一篇:PXA270嵌入式系统在Socket通信的应用
下一篇:基于图形化可视软件LabVIEW的测温系统设计

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料