现如今,直流电能表应用范围迅速扩大,不仅包括无轨电车、有轨电车、地铁车辆、电动汽车和光伏发电等领域的直流能量计量,而且适用于工矿企业、民用建筑、楼宇自动化等现代供配直流电系统。直流电能表是根据我国对电力设运行和计算机智能化监控要求而设计的,能够直接测量直流耗电系统的用电量,并可带有RS485接口,与微机进行数据交换。本产品适合蓄电池,太阳能电池板,直流电源等直流信号设备测试放电电能和计量参考电能值使用。亦可用于工矿企业、民用建筑、楼宇自动化等现代供配直流电系统的一种高性能自动化仪表。
LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C和BASIC开发环境,但是LabVIEW与其他计算机语言的显着区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。虚拟仪器(virtual instrument)是基于计算机的仪器。计算机和仪器的密切结合是目前仪器发展的一个重要方向。粗略地说这种结合有两种方式,一种是将计算机装入仪器,其典型的例子就是所谓智能化的仪器。随着计算机功能的日益强大以及其体积的日趋缩小,这类仪器功能也越来越强大,目前已经出现含嵌入式系统的仪器。另一种方式是将仪器装入计算机。以通用的计算机硬件及操作系统为依托,实现各种仪器功能。虚拟仪器主要是指这种方式。
LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一种用图标代替文本行创建应用程序的图形化编程语言。传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,而 LabVIEW则采用数据流编程方式,程序框图中节点之间的数据流向决定了VI及函数的执行顺序。VI指虚拟仪器,是 LabVIEW 的程序模块。
1 直流电能表检验装置的设计与实现
PC机根据设定的检验条件(包括检验时间、电压和电流的参比值等参数)自动控制整个直流电能表检验过程,采用CAN或RS-485总线与受检电能表通信,获取受检电能表的能量计量。开始检验时,PC机控制电压源和电流源输出预设信号,由检验装置和受检电能表同时开始计量。检验过程中,PC机采集相应的电压和电流信号值,并利用积分法计算电能量,结果作为能量计量基准。用户界面显示电能基准值,同时根据设定的通信方式获取并显示受检电能表计量结果,计算并给出受检电能表的测量误差。电压源和电流源输出量的大小可由PC机通过控制模块远程调节。设计的系统整体结构如图l所示。
2 基准电能计量原理
直流电能表检验装置中基准电能计量采用积分法进行计算,该方法具有较强的抗干扰能力。这是因为,直流电能表的检验工作必须考虑到相关工作环境的特点:
1)能量的直流脉动性 供电电压上很可能会叠加交流分量,负载电流很可能会经常变化;
2)网压波动范围大 部分直流供电网电压波动幅度达到甚至超过±20%;
3)网压的大量高次谐波成分 不仅网压本身为脉动性质,同时某些用电设备也会在线网上产生大量的谐波。
综上所述,基准电能计量采用积分法进行计算,即某段时间之内(t1~t2)能耗的计算方法如下:
式中,u(t)、i(t)分别为在t1~t2时间段内t时刻的工作电压(V)和电流(A),W为t1~t2时间段内消耗的电能量(kWh)。将各个时间段内的消耗能量累加即可得到总的耗能数值。
3 硬件设计
图1给出了该直流电能表检验方法及装置的系统整体结构图。组成系统的各部分设备及作用如下:
1)恒压源 根据受检直流电能表工作电压范围选取,提供可调的直流工作电压;
2)恒流源 根据受检直流电能表工作电流范围选取,提供可调的直流负载电流;
3)电压传感器 测量直流电压,输出的隔离电信号送入数据采集模块,选取瑞士LEM公司的CV3-1000型,额定输入电压700 V,可测范围为0~±1 000 V,测量小于±0.2%,可测量直流、交流、脉冲电流信号,信号频率范围0~500 kHz;
4)电流传感器 测量直流电流,输出的隔离电信号送入数据采集模块,选取瑞士LEM公司的ITB 300-SCT5-T型,额定输入电流300 A,可测范围±450 A,测量小于±0.05%,可测量直流、交流、脉冲电流信号,信号频率范围为0~100 kHz;
5)数据采集模块 将电压传感器和电流传感器的输出模拟信号转换为数字信号供PC机使用,选取研华公司的PCI1716L,采样速率达到250千次每秒;
6)控制模块 根据设计要求定制,接收计算机控制指令,控制恒压源和恒流源的输出;
7)通信模块 与受检电能表进行通信,完成读取和控制,可以采用周立功公司USBCANl型CAN通信模块或JaRa2206型USB/RS485转换器等;
8)PC机 自动生成检验;图形化显示测量结果;储存测量结果,建立数据库;若配备打印机,可打印检验结果等。
4 软件设计
4.1 前面板设计
前面板是图形化的人机界面,用于显示测量结果和处理数据。用户可根据需要通过前面板上的开关、按钮和旋钮对程序代码及参数实现实时改变,使得测量数据的显示达到状态。设计的直流电能表检验装置前面板如图2所示。
4.2 数据采集模块
该直流电能表检验装置选用PCI-1716L数据采集卡。PCI-1716L是一款功能强大的高分辨率多功能PCI数据采集卡,带有1个250 K/s,16位A/D转换器,提供16路单端模拟量输入或8路差分模拟量输入,也可以组合输入;还带有2个16位D/A转换输出通道和16位数字量输入/输出通道。
需要特别说明的一点,为了减轻CPU负担,该直流电能表检验装置采用DMA(Direct Memory Access)模式直接从内存存取数据。在DMA模式下,CPU只须向DMA控制器下达指令,让其处理数据传输。传输完毕后再将信息反馈给CPU,这在很大程度上减轻CPU资源占用率,大大节省系统资源。另外,DMA模式传输优先级高于程序中断,二者的区别主要表现在对CPU的占用程度不同。中断请求不但使CPU停下来,而且要求CPU执行中断服务程序,这其中包括对断点和现场的处理以及CPU与外设的传送,所以CPU付出很大代价;但若以DMA方式请求,仅仅会使CPU暂停一下,不需要对断点和现场的处理,由它控制外设与主存之间完成数据传输,无需CPU干预,只占用一点CPU时间。
4.3 CAN通信模块
该直流电能表检验装置选用USBCANl型CAN通信模块卡与受检电能表进行通信,完成读取和控制。Virtual CANInterface(VCI)函数库是专门为ZLGCAN设备在PC上使用而提供的应用程序接口。库里的函数从ControlCAN.dll中导出,在LabVIEW中可以直接调用这些库函数而无需额外的操作。另外,当设备需要发送或者接收数据时,应分别调用VCI_Transmit和VCI_Receive两个库函数。设计的直流电能表检验装置CAN通信模块卡初始化程序和发送接收程序如图4和图5所示。
5 主要结论及改进方案
该直流电能表检验装置现应用于北京电保厂现场,并且已经向国家局申请发明。
经实验证明,此检验装置系统完全达到预期指标和要求,主要体现在以下几点:
1)检验后直流电能表测量误差小于±0.1%。本系统从硬件和软件算法两方面保障和提高了系统;
2)系统达到稳定要求。本检验装置对实验中出现的不稳定因素采取了相应改进方案:硬件方面,通过接地、独立供电等措施抑制系统干扰;软件方面,通过在通信协议中使用冗余纠错、判错重发等方法防止外部干扰的影响。
3)实现功能强大的要求。用户可根据自身要求对测试项目进行定制,并存储模板。同时本检验装置还提供对被检数据的多种处理,包括汇总、统计、打印等功能,充分满足用户需求。另外,本检验装置用户界面采用Windows界面形式,操作方便且使用友好。
未来的工作主要是深化电能表校验装置的改进方案,以实现l台PC机控制多台待检直流电能表设备,实现PC机远程控制,同时研究在网络上控制电能表检验装置的方案。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。