分析半导体高能效计算机电源方案

时间:2011-08-28

  安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ONNN)是应用于高能效电子产品的首要高性能硅方案供应商。公司的产品系列包括电源和信号管理、逻辑、分立及定制器件,帮助客户解决他们在汽车、通信、计算机、消费电子、工业、LED照明、医疗、军事/航空及电源应用的独特设计挑战,既快速又符合高性价比。公司在北美、欧洲和亚太地区之关键市场运营包括制造厂、销售办事处及设计中心在内的世界一流、增值型供应链和网络。

  用于80 PLUS金级/白金级能效ATX电源设计的的高性能组合控制器

    台式计算机向来是能效规范机构瞄准的重要目标。安森美半导体身为厂商,更是不断推出符合能效规范的ATX电源控制器。这器件采用连续导电模式(CCM)功率因数校正和半桥谐振双电感加单电容(LLC)转换器,用于高能效80 PLUS金级/白金级能效设计。

  NCP1910结合PFC和LLC控制器于单芯片中,集成这两个转换器所需的全部信号交换(handshaking)功能,提高了可靠性,支持更简单、更高密度的设计。NCP1910的设计用于ATX、一体机(all-in-one)及服务器电源,采用SOIC-24封装。图1显示的是NCP1910的产品示意图。

  图1:NCP1910产品示意图。

  符合各种VR规范的高能效Vcore电源控制器方案

  安森美半导体为台式机、服务器和笔记本等提供完整系列的多相或单相Vcore控制器,包括:

  NCP6151/6121(采用Flex Mode + Dual Edge架构,符合VR12规范);

  NCP6131/6132(采用Flex Mode + Dual Edge架构,符合IMVP7规范);

  ADP4000/3290/3293 (采用Flex Mode架构,符合VR11.1规范);

  ADP3210/3211/3212/3218 (采用Flex Mode架构,符合IMVP6.5规范);

  NCP5392/5395(采用Dual Edge架构,符合VR11.1规范);以及

  NCP5393(采用Dual Edge架构,符合AM2+规范)等。

  安森美半导体的多相降压控制器结合差分电压及电流感测与自适应电压定位(adaptive voltage positioning)功能,为世代的CPU供电。双缘(Dual Edge)及Flex Mode脉宽调制(PWM)控制再结合电感电流感测功能,为瞬态事件提供极快的初始响应,因而可以采用更小的大陶瓷电容来满足瞬态负载线路要求。这些控制器集成高性能运算误差放大器,能够方便地为系统提供补偿。安森美半导体专有的动态参考注入技术使这误差放大器补偿事实上不依赖于系统对电压识别(VID)变化的响应,免除了在过冲与动态VID性能之间的折衷。

  值得一提的是,NCP6151、NCP6121、NCP6131和NCP6132是安森美半导体配合第二代Intel? Core?处理器系列(即Sandy Bridge)推出的高能效电源管理器件。控制环路的非线性瞬态对应满足高性能应用的要求,而30 mV/s的转换速率,结合前馈功能,将充电和放电时间缩至短,用于高能效工作。轻载工作期间自动“切相”至单相工作,进一步提升了能效。这几款器件中,NCP6151是用于服务器应用的2/3/4相CPU控制器及单相图形处理器(GPU)控制器,NCP6121是用于台式机的1/2/3相CPU控制器及单相GPU控制器,而NCP6131是用于笔记本的3相CPU控制器及单相GPU控制器。

  这些NCP61xx控制器结合安森美半导体提供的业界MOSFET驱动器NCP5901或NCP5911集成,以及优化了能效的新的NTMFS49xx、NTTFS49xx、NTD49xx或NTMS49xx高端稳压MOSFET,使客户能够创建用于客户端级和企业级的完整供电方案。每款新器件均提供极低的门电荷(Qg)和门阻抗(Rg),将开关损耗降至,并改善信号质量;提供低电容,将驱动器损耗降至;提供低导通阻抗(RDS(ON)),提高总能效。图1中分别显示的是结合采用这些器件的台式机和笔记本Vcore电源方案的应用电路图。

  图2:台式机及笔记本Vcore电源方案应用电路图。

  系统电源、芯片组及DDR电源控制器方案

  先将运行时钟频率或速度放在一边,单从工作电压这一点来看,我们能够看出DDR1、DDR2和DDR3存储器分别由2.8,1.8和1.5V的电压来供电。因此,与使用3.3V电压的SDRAM标准芯片集相比,这些存储器在产生更少热量同时还实现了更高的效率。DDR3通过采用 1.5V的工作电压,消耗的功率比DDR2(采用1.8V)更少——较DDR2降低了16.3%。DDR2和DDR3存储器都具有节能的特性,如采用了更小的页面尺寸和有效的掉电模式。而且,DDR存储器接口采用新的串联端接逻辑(SSTL)拓朴,旨在提高抗噪性、增加电源抑制并通过更低的电源电压来降低功耗(针对可比的速度)。另外值得注意的一点是,DDR3和DDR2 SDRAM支持片内端接,而DDR1 SDRAM不支持。

  安森美半导体除了提供用于CPU电源管理的方案,还提供用于系统电源、芯片组及DDR存储器的电源控制器方案(参见表1)。以上网本应用为例,除了可以采用ADP3211A单相降压控制器用于CPU电源管理,还可使用安森美半导体用于系统电源、芯片组及DDR电源的不同控制器方案。

  例如,在上网本应用中可以采用安森美半导体的单同步整流降压控制器NCP5217。这器件是系统、I/O及存储器性能的电源方案之一,可以在上网本应用出现较大的输入电压变化时仍能提供恒定的输出电压。这种控制架构使各组电源间交错工作,能够降低输入电容的物料单成本。

  表1:安森美半导体用于计算机系统电源、芯片组及DDR电源的控制器方案

  提供更高能效的不同封装MOSFET

  台式机、服务器和笔记本等计算机应用主要需要电压不超过30 V的低压MOSFET。安森美半导体为这些应用提供丰富的N沟道及P沟道MOSFET选择(详见安森美半导体《计算机电源方案选型小册子》)。这些MOSFET提供30 V、-30 V或25 V的漏极-源极电压(VDS),采用SO8-FL 5x6 mm、μ8FL 3.3x3.3 mm、DPAK、SOIC-8 5x6 mm或ICEPAK等不同封装,为计算机电源应用提供高能效。其中,采用ICEPAK封装的MOSFET用于增加功率开关的功率密度。

  值得一提的是,安森美半导体新近针对计算机等应用推出了带集成肖特基二极管的30 V MOSFET产品,包括NTMFS4897NF、NTMFS4898NF及NTMFS4899NF。这些MOSFET采用紧凑型5 mm x 6 mm SO-8FL封装,在10 V时分别拥有2 mΩ、3 mΩ及5 mΩ的导通阻抗(RDS(on))值,针对降压转换器应用中的同步端而优化,达致更高电源能效。典型门电荷(在4.5 V门极-源极电压(Vgs)时)规格分别为39.6纳库仑(nC)、25.6 nC及12.2 nC,确保开关损耗也保持。集成肖特基二极管借助于集成在与初级FET结构相同的裸片中,减小死区时间导电损耗,因而提升能效及改善波形。

  热传感器、风扇控制器及系统监控器

  安森美半导体为计算机应用提供完整选择的远程热传感器、风扇控制器及系统监控器。其中,热传感器将温度数据转换为数字格式,并通过SMBus总线传送这些数据信息。先进的系统监控方案带来电压和电流监测、电池检测、闪存及GPIO功能,提供了全套系统状况监测及控制器。

  这些计算机热管理器件包括ADM1026/27/29/30/31、ADT7460/63/62/67/68/73/75/76、ADM1033/34/32、ADT7490/61A/21/81/82/83A/84A/85A/86A/88A、NCT75及NCT214等。

  计算机高速接口开关器件及低电容保护器件

  安森美半导体为服务器、台式机、笔记本和上网本等计算机应用中的高速接口,如PCI Express(PCIe)、DisplayPort、千兆位以太网(GbE)及USB 2.0等,提供多种开关器件。以服务器应用为例,相关应用示意图及可以采用的器件如下图所示。

  图3:安森美半导体应用于服务器的开关器件型号及应用示意。

  在计算机应用的高速接口保护方面,安森美半导体同样提供多种选择(见表2)。这些保护方案中,既有传统ESD保护方案,也有新的PicoGuard XS保护方案(见图4)。安森美半导体的高速接口保护产品系列兼具极高的信号完整性及业界的钳位电压,确保为敏感的高速接口提供等级的保护。

  表2:安森美半导体针对不同高速接口应用的不同保护方案。

  值得一提的是,安森美半导体新的PicoGuard XS?架构可以维持高速数据接口的信号完整性,同时提供更强的ESD保护能力。这种架构向上布线并穿过封装,而不是位于封装下面,藉此消除走线寄生参数。这种方法将电感与ESD二极管集成在一起以匹配信号线路阻抗,从而摒弃任何类型的外部补偿。集成电感降低钳位电压及受保护ASIC所流入的残余电流,从而改善ESD保护性能。

  图4:传统ESD保护设计与新的PicoGuard XS架构比较。

  总结:

  安森美半导体五大特性∶电阻率特性,导电特性,光电特性,负的电阻率温度特性,整流特性。

  ★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。

  ★在光照和热辐射条件下,其导电性有明显的变化。

  晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。

  共价键结构:相邻的两个原子的一对外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。

  自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。

  空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。   电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。

  空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。

  本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。


  
上一篇:分析无线通信网络设计与应用
下一篇:浅谈LTC3880双输出多相降压电源解决方案

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料