浅谈软开关BOOST电路的分析与仿真方案

时间:2011-06-28

  介绍一种改进型ZVT-BOOST电路,辅助管增加了无损吸收电路,进一步提高了软开关电路的效率。文中分析了电路的工作原理,给出了仿真与实验结果以及主要参数的设计。

  有源功率因数校正(APFC)技术能够实现各种电源装置网侧电流正弦化,把非线性负载变换成为一个等效纯电阻,使功率因数接近1,极大地减少了电流的高次谐波,消除了无功损耗,减小了电磁干扰(EMI)。目前已进入商业实用阶段。由于是在电网和电源装置之间串联插入的功率校正装置,因此功率因数校正装置的可靠性和电效率显得尤为重要。能够实现功率因数校正的电路有多种,在功率较大的场合,BOOST电路具有许多优点而得到了广泛的应用[1].但是,单相BOOST型PFC硬开关变换器工作于电流连续模式(CCM)时,由于BOOST二极管的反向恢复,功率开关器件将产生很大的开通损耗(这部分损耗将占PFC电路总损耗的30%)[2].同时产生很大的干扰。这不仅降低了功率,更为严重的是,由于损耗引起温升,降低了可靠性。所以在大功率时,硬开关BOOST电路存在严重的缺陷[1].零电压过渡(ZVT)技术应用于BOOST电路很好地解决了二极管反向恢复问题。但是其辅助管工作于硬关断状态,将产生较大的关断损耗。

  为了减少ZVT-BOOST电路辅助管的关断损耗,在辅助管上加入无损吸收电路,实现辅助管的软关断。电路如图1所示,图中C1、VD1就是关断时的无损耗吸收电路。

  对于传统的BOOST电路,这个电路存在的问题在哪里呢?我们知道,电力电子的功率器件,并不是理想的器件。在基本的BOOST电路中:

  1、当MOS管开通时,由于MOS管存在结电容,那么开通的时候,结电容COSS储存的能量几乎完全以热的方式消耗在MOS的导通过程。其损耗功率为COSSV2fS/2,fS是开关频率。

  2、当MOS管开通时,升压二极管在由正向导通向反偏截止的过程中,存在一个反向恢复过程,在这个过程中,会有很大的电流尖峰流过二极管与MOS管,从而导致功率损耗。

  3、当MOS关断时,虽然有结电容作为缓冲,但因为结电容太小,关断的过程电压与电流有较多的重叠,也产生一定的关断损耗。

  下面我们来仿真一下基本的BOOST电路。因为BOOST电路的输入端是个大电感,在稳态工作时,电流基本不变,所以,在稳态时可以用电流源来代替。而输出因为是大的滤波电容,稳态时,电容电压基本不变,故而在稳态时可以用电压源来代替输出电容。

  

我们进行瞬态分析,得到下图结果:

  从图上可以看到:

  1,MOS管在开通时,可以看到miller效应在驱动信号上造成的平台。

  2,当MOS管开通时,在MOS的漏极和二极管上产生很大的尖峰电流。

  从仿真结果来看,的确存在我们前面分析的容性开通、反向恢复等问题。

  那么软开关就能解决这个问题吗?

  下面我们先推出今天的个软开关的例子:此电路是我以前分析一华为通信电源模块时所见。

  在这个电路中,我们主要增加了一个50uH电感、一个1000pF电容、一个辅助开关管HGTG30N60B3、一个钳位二极管MUR460等功率器件。

  进行瞬态分析,我们得到如下结果:

  在此图中,ga为辅助开关管驱动信号,g为主开关管驱动信号。ia为辅助开关管集电极电流信号,id为主开关管漏极电流信号。vdsa为辅助开关管VCE信号,vds为主开关关VDS信号。现在把工作原理分析如下:

  t1时刻,辅管开始导通,由于辅管是双极性器件,所以容性开通的情况并不严重。ia波形从零开始缓慢上升,说明辅管是零电流开通。随着ia电流增加,当ia=iout的时候,输入电感电流完全流入辅助开关管,谐振电感电流开始过零反向流动,主开关管IXFH32N50的结电容开始通过谐振电感谐振放电。

  t2时刻,主开关管的vds电压已经谐振到零,随后,主管的体二极管开始导通,把谐振电容钳位在0V,这时候,如果开通主管,则为零电压开通。

  t3时刻,主开关管开通,从g的波形上可以看出来,主管开通驱动波形上不在有miller效应造成的平台,这也说明主管是零电压开通。

  t4时刻,主管开通后,辅管就可以关断了。从波形上看,辅管的vce与集电极电流ia之间存在比较大的重叠区域。说明辅管的关断并不是软关断。辅管关断后,由于MUR460的钳位作用,辅管电压不可能超过输出电压vout.那么因为主管此时已经开通,而辅管的VCE为400V,那么谐振电感在400V电压作用下,电流快速上升。

  t5时刻,主管的id达到了输入电流IIN,电路进入通常的PWM状态。直到t6.

  t6时刻,主开关管关断,电感电流通过二极管向负载输出。主管因为并联了较大的snubber电容(1000pF),所以,关断时,vds以一个斜率上升,有较好的零电压关断特性。

  可以看出,改进型ZVT-BOOST电路的主管在零电压下开通。关断时,并联电容减少了关断损耗。辅管由于增加了缓冲吸收电容C1,减少了关断损耗。而且吸收电路的能量(1/2)C1U2o向负载释放,没有造成损耗。因此,无损吸收进一步降低了原来ZVT-BOOST电路的损耗。

  此电路的优点是:主管实现了零电压的开通与关断。升压二极管实现了"软"的关断。辅管实现了零电流开通。

  缺点是:辅管的关断特性不好,有较大损耗。另外,钳位二极管,在主管关断后,也流过一定的电流,会让辅管开通的零电流效果变差,甚至产生电流尖峰,这一点也可以从仿真波形上看出来。

  第二个例子,就是常见的ZVT零转换电路,先看一下原理图:

  在这个原理图中,相对于基本的BOOST电路,谐振回路是并联在主回路上的。主开关管Q1,依然采用MOS,IXFH32N50,辅助开关管Q2采用IGBT,HGTG30N60b3,谐振电感L1,20uH,谐振电容C2,2nF,两个箝位二极管采用MUR460,主二极管采用MUR1560.设定好参数后,我们进行瞬态分析,得到波形如下图:

  在此图中,g为主管驱动,vds为主管VDS波形,i(d)为主管漏极电流,ga为辅管驱动,i(a)为辅管集电极电流,vdsa为辅管VDS波形,i(l.i1)是谐振电感电流,i(p)主二极管电流。

  工作原理分析如下:

  t0时刻之前,主二极管导通,向负载供电。

  t0时刻,辅管开通,由于电感L1的存在,辅管电流线性上升,主二极管电流线性下降。所以辅管是零电流开通,注意看辅管驱动波形上开通过程的miller效应是存在的。而主二极管的关断过程是相当的"软",反向恢复电流很小。在主二极管电流完全转移到电感L1中以后,主管的VDS电压开始谐振下降。

  t1时刻,主管VDS电压降到零,然后主管的体二极管导通,将VDS箝位在零。此时开通主管的话,就属于零电压开通。

  t2时刻,主管开通,从波形上可以看出,主管完全是零电压零电流的状态开通的。从栅极信号可以看出,没有开通过程的miller效应。主管开通后,辅管就可以关断了。

  t3时刻,辅管关断。从波形上可以看到,关断过程中,辅管的VDS电压在C2的缓冲下缓慢上升,电压和电流重叠部分较小。因为仿真模型我没有找到更快速的IGBT,现实中,我们可以选择更高速的IGBT,那么,可以实现辅管的零电压关断。谐振电感L1中的能量向C2中转移。

  t4时刻,当谐振电感L1能量完全转移到C2中以后,箝位二极管MUR460_2关断反偏。

  t5时刻,主管关断。输入电流通过C2、MUR460_2、MUR460_1输出向负载。在C2的缓冲下,主管 的VDS电压则线性上升,呈现良好的零电压关断状态。

  t6时刻,C2能量完全释放完毕,C2两端电压差为零。主二极管MUR1560导通,输入电流通过主二极管向负载输送能量。这样电路的工作过程就完成了。

  第三个例子,此电路常见于DELTA的通信电源模块。从几百瓦到几千瓦的,好多型号都用了这个电路。是DELTA有保护的一个电路。见图:

  在这个电路中,几乎不好说哪个管子是主管,哪个是辅管了。如果真的要定一个的话,我们就认为Q1,这个IGBT 为主管吧。此电路的驱动信号和前面的两个例子不同,是两路同样宽度,但相位不同的驱动信号。主管在前开通,辅管在后开通。仿真结果如下:

  这个电路分析起来比较复杂。t0时刻之前,输入电流通过D1向负载供电。

  t0时刻,Q1开始导通,从图上可以看出,Q1的集电极电流是按照一定的斜率从零开始上升的。故而认为Q1是零电流开通。Q1开通后,L1、C1,C2构成一个谐振回路,因为C1<

  t1时刻,C1放电到零,这时候如果开启Q2,那么Q2就是零电压开通了。

  t2时刻,Q2导通,从波形上可以看出,是零电压导通。L1电流继续在C2电压作用下降低。

  t3时刻,Q1关断,因为有D2的存在,Q1上的电流被转移到了Q2中,所以,Q1是零电流关断。

  t3~t4时刻,L1电流过零,并在C2电压作用下开始反向增加。

  t4时刻,Q2关断,以为C1的作用,Q2是零电压关断。Q2关断后,L1,C1, C2再次谐振,C1电压上升。L1电流下降, L1低于输入电流时,D2导通,给C1充电。

  t5时刻,C1上升到VOUT+|VC2|时,D1导通,开始向负载供电。同时,因为D2导通,L1电流在C2电压作用下开始上升。

  t6时刻,L1电流上升到输入电流,D2截止,L1电流保持与输入电流相同,向负载供电。

  第四个例子,无源无损软开关。前面讲过的例子,都是采用了至少两个开关管的电路结构。其优点,就是软开关效果好。具体先看原理图:

 

只需要一个开关管,控制也简单了。但是到底是否能起到软开关的效果呢?看看仿真结果吧:

  t0时刻之前,输入电流通过L1, D1向负载供电。

  t0时刻,Q1导通,由于L1的作用,Q1的集电极电流按照一个斜率从零开始上升,故而可以认为Q1是零电流开启。D1反向恢复电流很小。从驱动波形上看,存在miller效应。这也是此处不选用MOSFET的原因。因为用MOSFET的话,是容性开通,损耗比较大。Q1开通后,C1,C2,L1开始谐振,因为C2》C1,所以谐振频率由L1,C1决定。

  t1时刻,经过四分之一周期的谐振,C1能量完全转移到了C2中, C1电压降为零,D2导通,开始了L1C2的谐振。L1电流在C2电压作用下谐振下降。

  t2时刻,L1电流谐振到零,D2, D3截止,L1电流保持为零,C2电压维持在峰值保持不变。

  t3时刻,Q1关断,因为C1的缓冲效应,Vce电压从零以一定的斜率上升,我们认为Q1是零电压关断。仿真的波形图上,因为IGBT的电流拖尾,我们看到关断损耗不是很小。幸运的是,现在已经出现了高速的IGBT,用在这个场合还是很合适的。

  t4时刻,C2充电到输出电压,D3,D4导通,L1电流在C2电压的作用下,开始上升。输入电流开始从D2,D3,D4支路开始向L1,C2,D4支路转移。

  t5时刻,L1电流等于输入电流,D2,D3截止。

  t6时刻,C2电压降为零,D1开通,D4截止。电流经过L1, D1向负载供电。

  无源无损软开关的优点是:

  1,只需要一个开关管,控制方便。

  2,因为吸收网络是无源器件,不会受到干扰,工作可靠。

  缺点是:

  1,开关管的开通是容性开通,所以用双极型开关管。

  2,因为有一个过程是电流流经D2,D3,D4,压降比较大,有一定的损耗。

  3,效率比前面例子中的软开管略低一点。

  其实,不管是哪种仿真软件,算法从实质上来说,也都是差不多的。终都是要按照电路的基本原理来计算。

  仿真的准确与否,关键是看模型的准确度,以及,为了仿真所作的简化合理性。

  从我个人的感觉来说,pspice和saber仿真的可信度都是非常高的。

  我目前做的一款很特别的电源,就是在仿真软件的协助下成功开发出来的。


  
上一篇:通过观察VGA信号传输技术来解决传输问题
下一篇:芯科实验室在人机界面市场上的突破

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料