精密差分输出仪表放大器设计

时间:2011-06-23

  仪表放大器(IA)由于其本身所具有的低漂移、低功耗、高共模抑制比、宽电源供电范围及小体积等一系列优点,在数据采集系统、电桥、热电偶及温度传感器的放大电路中得到了广泛的应用,它既能对单端信号又能对差分信号进行放大。在数据采集系统中,一般需要实现对多路信号进行数据采集,这主要是通过多路开关来实现对多路信号的切换。实际应用中,针对不同的测量对象可以分别选择单端信号或差分信号的输入方式来实现对信号的获取,一般市场上所有的多路信号采集系统基本上都具备这种功能。

  采用技术的模数转换器(ADC)能够接受差分输入信号,从而允许将来自传感器的整个信号路径以差分信号的形式传送给ADC.这种方法提供了显着的性能优势,因为差分信号增加了动态范围,减小了交流声,并且消除了对地噪声。

  图1a和1b所示的是两种常见的差分输出仪表放大器电路。前者提供单位增益,后者提供了2倍增益。但是,与单端输出的仪表放大器相比,这两种电路都会受到增加噪声、失调误差、失调漂移、增益误差和增益漂移的影响。

  图1a,1b:设计差分输出仪表放大器的通用方法。上部电路保持增益,下部电路将增益加倍。

  In-amp=仪表放大器

  Output Voltage=输出电压

  op amp=运算放大器

  图2所示是一个没有上述缺陷的差分输出仪表放大器原理图。这种设计充分利用了这样的特性,仪表放大器的输出实际上是其输出引脚(Vo)与参考引脚(Vref)之间的差。这里的应用是在两个引脚之间加入了一个增益为-1的反相器。

图2 差分输出仪表放大器原理图

  图2:设计差分输出仪表放大器新的改进方法。保持了增益,且不会在输出信号中增加失调、漂移或噪声。

  n-amp=仪表放大器

  Output Voltage=输出电压

  op amp=运算放大器

  输入电压是V时,输出电压(Vo–Vref)也应该等于V.参考引脚的电压与输出引脚的电压极性相反。为了满足(Vo-Vref)=V,输出必须为Vo=Vin/2,Vref=-Vin/2.通过向运算放大器的同相端输入端施加+2.5V信号来设置其共模输出电平。运放在节点B产生+2.5V电压。如果对输入端施加+1V电压,那么节点A产生+3V电压,并且节点C则为+2V,因此,输出为+1/2V以上和+2.5V以下。(Vo-Vref)的误差仅是由仪表放大器引起的。由反相放大器和电阻器引起的误差诸如失调电压、噪声和增益误差对两个输出端的影响同相,因此它们仅对共模输出有贡献,会被ADC抑制掉。

  图3是一张性能波形图,上面的波形是一个2Vp-p 1kHz输入。下面是两个输出波形。输出共模电压为+2.5V.图4示出的是差分输出信号的谱密度性能图。

图3 性能波形图

  图3:2Vp-p, 1kHz输出信号(上部)。1Vp-p 1kHz差分输出信号(下部)。输出共模电压为+2.5V.

图4 差分输出信号说分析

  图4:差分输出信号谱分析。仪表放大器的输入信号为2Vp-p, 1kHz。


  
上一篇:EtherCAT获飞思卡尔处理器支持
下一篇:可嵌入心电震发生器的电击系统的开发

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料