目前 ,市售取暖器只有500W和1000W两种调节,而且都是处于连续加温状态。这样一来,就会出现在不太冷的情况下用1000W取暖感到过热,而用500W取暖又觉得热气不够的情况。
一、取暖器控制电路功能
笔者设计了一个取暖器控制电路,该电路具有以下功能:
1.能使取暖器处于间断性工作状态,即加温一段时间暂停一段时间。这样,既能节省电能,又能满足人们取暖的需要。
2.具有长时间(lO小时以上)定时功能,睡觉前只要设定好定时呵间,到田候就会自动切断取暖器的交流电源。
二、取暖器控制电路的组成
控制电路框图如图1所示。由图1可知,该电路主要由定时电路、单稳态电路控制电路1、第二单稳态电路控制电路2、光耦可控电路、电子开关,以及电源电路等组成。
图1 控制电路框图
由C1、RI稳压二极管DW、整流二极管Dl、电容C2及C3等组成直流5.4V电源电路,给整个电路供电。IC1、R2、R3、C4、C5、C6、D2、D3、T1、W1及复位按钮K2等组成定时电路。IC2、R4、R5、R6、C7、 C8、C9、D4、T2及电位器W2等组成单稳态电路,R8、T3组成控制电路l.
IC3、R9、RiO、CIO、C11、D5、D6、T4及电位器W3等组成第二单稳态电路。R11、R12、R13、T5、T6等组成控制电路2.
IC4、R14、R15、发光二极管LED2等组成光耦可控电路。双向可控硅BTAl6A/600V及瓷片电容C12组成电子开关电路。
三、电路工作原理
控制电路如图2所示,按下带锁按键Kl,直流电源+5.4V电压建立。由于C4两端电压不能突变,使IC1②脚为低电平(<l/3VDD)。故ICl③脚输出高电平,二极管D3反偏使IC2④脚为高电位,故不影响 IC2单稳态电路的工作。与此同时,电源5.4V通过Wt、R3向C6及Tl充电使IC1⑥、⑦脚的电压不断上升,定时开始。又由于C1两端电压不能突变,使IC2②脚为低电平,故IC2③脚输出高电平。此高电 平:其一,使光耦可控硅IC4导通,主可控硅BTA获得触发电流导通,取暖器插座得电,取暖器升温,同时发光二极管LED2点亮。其二,使三极管T3饱和导通,即IC3②脚为低电平,故IC3③脚输出高电平 .由于二极管D6的作用,使IC3⑥、⑦脚电压被箝位到0.5V左右,电容C11不能充电。IC3③脚输出的高电平,使三极管T5饱和导通,T6截止,电源5.4V通过电阻R4旬电容C7充电,经过大约0.7R4C7≈330ms 的时间,充到电源电压5.4V.与此同时,电源5.4V通过W2和向C9和T2充电。由于T2的存在使充电时间延长了β倍(β为T2的放大倍数)。使IC2⑥、⑦脚的电压不断上升。
图2 控制电路
当电压上升到>2/3VDD时,IC2③脚输出低电平。其一,使光耦可控硅IC4截止,主控制硅也截止,取暖器插座失电,取暖器暂停升温,LED2熄灭。同时,C9通过IC2⑦脚和D4迅速放电,为下次充电作准备。其二,使T3截止,D6反偏,电源5.4V通过W3、R1O开始向C11和T4充电,IC3⑥、⑦脚的电压不断上升,当升到3VDD时,IC3③脚输出低电平,使T5截止、T6导通。此时,C7原先所充的电压通过T6迅速放电,使IC2②脚的电压迅速下降:当②脚电压下降到<1/3VDD时,由IC2构成的单稳又被置位,这样,IC2③脚又输出高电平,取暖器又升温,重复上述过程。通过上述分析可知,单稳、第二单稳控制电路1,控制电路2等组成了一个多谐振荡电路。第-单稳控制取暖器的升温时间,调节电位器W2,即可调节升温时间,第二单稳控制取暖器的暂停时间,调节电位器W3可调节暂停时间。
当定时时间到,即ICl⑥、⑦脚电压上升到>2/3Vnn时,IC1③脚输出低电平D3正向导通,使IC2④脚的电压被箝位在0.2V左右。因此,IC2被强迫复位,故IC2③脚输出低电平,光耦可控硅IC4及主可控硅BTA都截止,插座失电,自动切断了取暖器的交流电源。同时,C6通过IC1⑦脚和D2迅速放电,为下次充电作准备。调节电位器W1,就可调节定时时间(当W1调节值时,定时时间可达3小时)。当按下复位按钮K2时,IC1③脚又输出高电平,振荡电路重新开始振荡工作。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。