摘要: 结合主元分析(PCA)与线性鉴别分析(LDA)的特点,利用PCA-LDA算法进行性别鉴别。通过PCA算法求得训练样本的特征子空间,并在此基础上计算出LDA算法的特征子空间。将PCA算法与LDA算法的特征子空间进行融合,获得PCA-LDA算法的融合特征空间。训练样本与测试样本分别朝融合特征空间投影,从而得到识别特征。利用近邻准则即可完成性别鉴别。实验中利用三种预处理方法(PCA+LDA、HG+PCA+LDA、RHG+PCA+LDA),得出各自的实验结果,并进行比较。实验结果表明,利用RHG+PCA+LDA方法预处理后,使用PCA-LDA算法进行性别鉴别可以得到理想的效果。
随着社会发展,快速有效的自动身份验证应用广泛。生物特征是人类的内在属性,具有很强的自身稳定性和个体差异性,所以它是身份验证理想的依据。其中,人脸相比其他的人体生物特征具有直接、方便、友好等特点,所以利用人脸特征进行身份验证是自然直接的手段,并易于为用户所接受。性别鉴别作为其中特殊的一部分,可以加强人机交互系统的灵活性,而且可以对特殊环境下与性别相关的地方出入进行限制,收集有价值的统计信息(如每天出入的男性、女性数量,对酒吧、商场、零售业提供有价值的服务)等。
1 性别分类算法
性别分类是一个典型的二类问题,一般方法是通过输入一副人脸图像X,通过预处理,特征提取,分类器等过程后来决定X的类别。这里的性别分类算法如图1所示,它是由预处理、特征提取、分类器3个部分组成。
其中预处理主要是几何变换和区域直方图处理。通过这些工作保障了人脸几何(方向,大小)的不变性。基本消除了背景的影响和部分光照影响,提高了识别的。然后再预处理的基础上进行主元分析提取特征,获得主元分析PAC(Principal components Analysis)主元子空间和线性鉴别分析LDA(Linear Discriminant Analysis)特征子空间,利用分离器(人脸样本训练获得)进行分类。
1.1 预处理
该性别分类算法主要采用,几何处理+整体直方图处理(HG),几何处理+区域直方图处理(RHG)2种方法进行预处理,并进行比较。
请点击全文PDF:
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。