PWM逆变器式交流稳压电源的原理分析

时间:2009-11-06

  1引言

  现有两种无触点补偿式交流稳压电源在取代三相柱式交流电力稳压器。一种是变压器补偿式稳压器,其原理是用多个补偿变压器组合,通过“多全桥”变换电路,切换补偿变压器的初级头、尾连接方式进行补偿,去掉了机械传动和触点,提高了寿命和动态性能。补偿是有级的,而且所需的补偿变压器和切换开关较多,电路相对复杂,补偿低。另一种是PWM开关式交流稳压器,其原理是从输入侧取得工频交流电压,经过整流、正激高频PWM变换、相位跟踪和转换产生交流补偿电压进行补偿,补偿是无级的,补偿高,响应速度快。但电路复杂,还需要一个固定的逆补偿变压器,不易实现大功率应用。我曾介绍过的PWM斩波器式交流稳压电源很好地克服了上述缺点,是一种很有发展前途的交流稳压技术,但其存在着只能稳压,不能消除市电电压中谐波成分的缺点。为了扩大交流稳压电源的功能,我们又开发研制了利用PWM高频逆变器进行补偿的多功能交流稳压电源,这种稳压电源具有用户电力综合调节器(CustomPower)的功能,使稳压电源的性能又上了一个台阶。

  2 采用PWM高频逆变器的补偿式交流稳压电源

  采用PWM高频逆变器的补偿式交流稳压电源的原理电路如图1所示。其中补偿电压uco由单相全桥逆变器产生(也可以采用半桥式或推挽式逆变器),逆变器采用高频SPWM调制。单相全桥逆变器的输出电压uab通过输出变压器Tr,把电压uab变成补偿电压uco在Tr的次级输出。Tr的次级串联在主电路中以对市电电压的变化进行补偿,保持输出电压uo稳定不变。图中LFCF为低通滤波器,以滤掉逆变器输出电压uab中的高次谐波。变压器Tr次级绕组的电阻和漏感以及市电电源内阻共同组成线路阻抗Z,则当负载变化时在Z上产生的压降会使输出电压随之变化。ur为用正弦电压发生器和锁相环产生的标准参考电压,锁相环是使ur在相位上与市电电压us同步。用瞬时值usZisur作为SPWM全桥逆变器控制电路中的调制电压,控制电路的原理框图如图2所示。按此图的高频SPWM调制原理,当用(usZisur)作为正弦调制波时,就可以使逆变器的输出电压与市电电压的变化和负载电压的变化成比例。

  图1采用逆变器补偿的交流稳压电路

  图2 控制电路原理框图

  21逆变器输出电压的谐波分析

  假定逆变器的直流电源电压为Ud,载波三角波的电压幅值为Uc,则调制比M的值为:M=(1)

  式中:Us、Is、Ur为市电电压us,市电电流is和基准参考电压ur的有效值。载波比:N=,fc为三角波频率,fs为市电电压频率。

  SPWM波形如图3所示。由此图可知,逆变器输出电压uab的双重付里叶级数表示为:

  uab=ua-ub=MUdsinωt+·cosmπ·sin〔(mN+n)ωt〕(2)

  图3参差相位法获得三阶SPWM波

  因为变压器Tr的变比为ξ,故补偿电压uco的表示式为:

  uco=ξMUdsinωt+ξ·cosmπ·sin〔(mN+n)ωt〕(3)

  uco的频谱如图4所示,可知:载波比N越大,谐波频率越高,滤波越容易,所需的LFCF的值越小,当fc=12.8kHz时,LF=10mH,CF=2μF,即可将uco中的高次谐波滤掉。

  图4补偿电压uco的频谱和谐波分量与M的关系

  2 考虑线路阻抗Z的补偿分析

  由于逆变器开关管的正向压降,开关死区、变压器Tr初级绕组的电阻及漏感和交流滤波电感LF的绕组电阻及电感的影响,会使补偿电压uco的值减小。但这种影响不大,而且是基本固定的,与负载的大小变化关系不大,因此可以通过增大变压器Tr的变比ξ来补偿。

  由图1考虑到线路阻抗Z时,在us>ur的情况下输出电压的方程式为:

  uo=us-Zis-uco(4)

  假定市电电压中无谐波,市电输入功率因数cosφ=1,则:us=Ussinωt,is=Issinωt,将方程式(3)uco的值以及us、is的值代入式(4)得:

  uo=Ussinωt-ZIssinωt-ξMUdsinωt-cosmπ·sin〔(mN+n)ωt〕(5)

  用电路中低通滤波器LFCF滤掉uco中的高次谐波时,则上式变为:

  uo=Ussinωt-ZIssinωt-ξMUdsinωt(6)

  将式(1)的M值及ξ=代入式(6),则得:

  uo=Ussinωt-ZIssinωt-(Us-ZIs-Ur)·sinωt=Ursinωt

  图5所示SPWM高频逆变器式交流稳压电源有六种工作状态:

  us>ur+Zis,此时uco=us-Zis-ur,输出电压uo=us-(us-Zis-ur)-Zis=ur

  us us=ur,此时uco=-Zis,输出电压uo=us-(-Zis)-Zis=ur

  空载(is=0)us>ur,此时uco=us-ur,输出电压uo=us-(us-ur)=ur

  空载(is=0)us 空载(is=0)us=ur,此时uco=0,不补偿。

  图5 SPWM高频逆变器式交流稳压电源有六种工作状态

  从以上分析可知:当市电电压us或负载发生变化时,用瞬时值(us-ur-Zis)作为正弦调制电压的SPWM高频逆变器的输出电压uco完全可以补偿输出电压uo的变化,保持uo=ur不变。

  23对市电电压中谐波的补偿假定市电电压的数值不变,但却含有谐波Usnsinωt,即:

  us=Us1sinωt+Usnsinnωt,us1=ur。

  为了使推导简化,令is=0,则调制波电压为:

  us-Zis-ur=us1sinωt+Usnsinnωt-Ursinωt=Usnsinnωt(7)调制比:Mn=,则补偿电压为:=ξMnUdsinnωt+ξ·

  cosm″π·sin〔(m″N+n′)n′ωt〕(8)

  将us、is、的值代入式(4),用低通滤波器滤去中的更高次的谐波,并将Mn=,ξ=代入中即得:

  uo=Us1sinωt+Usnsinnωt-Usnsinnωt=Us1sinωt=Ursinωt(9)

  由式(9)可知:当市电电压us中含有谐波时用瞬时值(us-ur-Zis)作调制波的SPWM逆变器的输出电压uco即可以补偿掉us中的谐波,尤其是5次以下的低次谐波。

  此外从物理上看,由于控制电路采用的是市电电压与纯正弦波参考基准电压ur的瞬时值进行比较,所得到的瞬时值之差作为调制波进行控制补偿的,当市电电压us是正弦波时,us>ur时是负补偿,即us-uco;us2.4逆变器型式与参数

  稳压电源中的逆变器,可以用全桥式、半桥式或推挽式,其补偿效果基本相同。不用高频SPWM调制而改用线性Delta滞环PWM控制也可以达到相同的效果。应指出的一点是逆变器的直流电源电压一定要稳定,它对电压的补偿有直接影响。变压器Tr的变比ξ=的值取决于市电电压的变化范围,市电电压的允许变化范围为±10%,实际有的地方可高达±20%,所以变比ξ一般取(20~25)%,相应补偿变压器Tr的容量应取稳压电源标称容量的(20~25)%。

  3三相补偿式交流稳压电源

  三相补偿式交流稳压电源的原理电路如图6所示,它由主电路、控制电路和检测电路三部分组成。主电路又由并联部分、串联部分和直流部分的滤波储能电容 Cd三部分组成。并联部分是由低通滤波器和三相PWM开关整流器组成,开关整流器实际上就是一个三相电压型逆变器,它的主要作用是为串联部分的单相补偿逆变器提供整流直流电源,保持直流电容Cd上的电压恒定。直流电容Cd起滤波和储能作用。采用三相开关整流器的目的有两个,一是保持市电输入功率因数 cosφ=1,并使输入电流的波形接近正弦,以减小对市电的污染;二是可以使电能双向流动,使逆变器负载中的无功能量可以反馈回市电电源,提高补偿器的效率。此外,如果在直流电容Cd上并联储能蓄电池,当市电故障停电时,三相PWM开关整流器转换到逆变状态工作,又可以短时作为在线式UPS使用。如果再附加一部分控制电路,三相电压型逆变器又可以作为无功补偿器或有源滤波器使用,以滤掉负载电流中的谐波。串联部分是由三个单相全桥逆变器及其输出变压器(亦即补偿变压器)组成,其作用就是对市电电压的高低变化、三相不对称、谐波、闪变等进行补偿;串联部分之所以采用三个单相逆变器及输出变压器,其原因有两个,一是由于三相四线制的市电系统所带的负载多数情况下是不对称的,因此三相电压也不对称,必须用互无联系的单相逆变器独立进行补偿。二是也可以提高三相四线制电源的可靠性,万一有一相出现故障另外两相还可以继续供电。三个单相逆变器也都是可以双向工作的,当市电电压us等于标称基准电压时,三个单相逆变器由逆变的补偿状态转换到开关整流状态向直流电容Cd或蓄电池供电,以保证并联电路的三相电压型逆变器正常工作。这样,三相交流稳压电源就变成了用户电力综合调节器(Custompower)。

  图6三相补偿式交流稳压电源原理电路

  三相补偿式稳压电源的工作原理与单相相同,都是通过检测电路将需要补偿的各种电压分量检测出来进行补偿,以保持输出电压为正弦稳定的电压。由于三相四线制系统存在着三相电压不对称的问题,虽然单相电路使用的正弦瞬时值比较法也可以采用,但为了能检测出三相电压的不对称性,采用了基于广义瞬时无功理论的检测方法是更合适的,此法可以对三相四线制电路的非正弦电压和非对称电压进行检测,能更有效地检测出三相电压不对称时的补偿值。其原理电路如图7所示:将检测到的电压信号经过Park变换,然后通过低通滤波器滤掉d、q分量中的直流分量,再经过Park反变换,即可得到三相需要补偿的电压。

  图7广义瞬时无功理论谐波检测原理图

  3.1仿真结果

  图8及图9分别为给定的三相电压补偿前和补偿后的仿真波形。由这两种波形可以看出:补偿前的图8波形的THD分别为15%、1732%、2449%,基波有不对称现象。补偿后的图9波形的THD下降到3%以内,是一组比较理想的正弦波,基波的不对称现象也基本消除了。

  图8补偿前的三相电压仿真波形

  图9补偿后的三相电压仿真波形

  3.2实验结果

  为了进一步验证补偿效果,又进行了实验。实验参数为:变压器变比为1∶4;串联部分电路的滤波器参数为:LF=10mH,CF=2μF;并联部分电路的滤波器参数为:LF=10mH,CF=1μF。串联部分及并联部分逆变器的开关管为PM50RSK060,开关频率为12.8kHz,标准电压有效值为110V(峰值为15556V),频率为50Hz。图10及图11分别为补偿前和补偿后A相电压的实验波形。图10补偿前的电压幅值为120V(有效值为8485V)下降了2286%,而补偿后的图11的电压幅值为154V(有效值为109V),下降1%。可见对电压的高低变化进行了补偿,补偿为1%;THD由补偿前的32%下降到补偿后的27%。

  图10补偿前电压实验波形

  图11补偿后电压实验波形

  4结语

  通过仿真和实验表明,采用PWM高频逆变器的补偿式交流稳压电源,既可以补偿市电电压的高低变化,也可以补偿谐波和闪变等,对于三相稳压电源还可以补偿三相电压的不对称,从而有效地提高了电能质量,是一种很有前途的交流稳压电源。

  适当地加入一些控制电路,还可以使其具有无功补偿、有源滤波的作用。在直流电容Cd上并联蓄电池以后,还可以当短时在线UPS使用,是一种较好的多功能电能质量补偿器,具有广泛的用途,应大力发展,以取代陈旧的交流稳压电源。


  
上一篇:TI智能手机的电源、触摸屏和音频方案
下一篇:数字射频存储系统关键技术仿真研究

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料