0 引 言
FIR数字滤波器在数字信号处理的各种应用中发挥着十分重要的作用,它能够提供理想的线性相位响应,在整个频带上获得常数群时延,从而得到零失真输出信号,同时它可以采用十分简单的算法予以实现。这些优点使FIR滤波器成为设计工程师的。在采用VHDL或VerilogHDL等硬件描述语言设计数字滤波器时。由于程序的编写往往不能达到良好优化而使滤波器性能表现一般,而采用调试好的IP Core需要向Al-tera公司购买。在此,采用一种基于DSP Builder的FPGA设计方法,使FIR滤波器设计较为简单易行,并能满足设计要求。
1 FIR滤波器介绍
1.1 FIR滤波器原理
对于一个FIR滤波器系统,它的冲激响应总是有限长的,体的FIR滤波器可用下式表示:
式中:r是FIR滤波器的抽头数;x(n-r)是延时,r个抽头的输入信号;b(r)是第r级抽头数(单位脉冲响应);M是滤波器的阶数;y(n)表示滤波器的输出序列。滤波器就是寻求一个可实现的系统函数H(z),使其频率响应H(ejω)满足所希望得到的频域信号,也可以用卷积的形式来表示:
y(n)=z(n)*h(n)
典型的直接I型FIR滤波器如图1表示,其输出序列y(n)满足下式:
1.2 设计要求
数字滤波器实际上是一个采用有限算法实现的线性非时变离散系统。它的设计步骤是先根据需要确定其性能指标,设计一个系统函数h(n)逼近所需要的性能指标,滤波器的系数计算可以借助Matlab强大的计算功能和现成滤波器设计工具来完成,采用有限的算法实现。该系统的设计指标为:设计一个16阶的低通滤波器,选模拟信号的采样频率Fs为5 kHz,要求信号的截止频率Fc=1 kHz,输入序列的位宽为9位(宽位为符号位)。激励源为幅值为27,频率为800 Hz与1 600 Hz两个信号的混频信号。
2 基于DSP Builder设计FIR滤波器
2.1 DSP Builder介绍
DSP Builder是美国Al-tera公司推出的一个面向DSP开发的系统级设计工具,它在QuartusⅡ设计环境中集成了Matlab和SimuIinkDSP开发软件。以往使用的Matlab工具仅仅作为DSP算法的建模和基于纯数学的仿真,其数学模型无法为硬件DSP应用系统直接产生实用的程序代码,仿真测试的结果也往往是基于数学的算法结果。而以往的FPGA所需要的传统基于硬件描述语言的设计因考虑了FPGA硬件的延时与VHDL递归算法的衔接,以及补码运算和乘积结果截取等问题,所以相当繁琐。而对于DSP Builder而言,它作为Matlab的一个Simulink工具箱,使得用FPGA设计的DSP系统完全可以通过Simulink的图形化界面进行建模、系统级仿真。设计模型可直接向VHDL硬件描述语言转换,并自动调用QuartusⅡ等EDA设计软件,完成综合、网表生成以及器件适配乃至FPGA的配置,使得系统描述与硬件实现有机地融合,充分体现了现代电子技术自动化开发的特点与优势。
2.2 FIR滤波器的设计
2.2.1 FIR滤波器参数选取
采用Matlab提供的滤波器专用设计工具FDAtool仿真设计的滤波器,可满足要求的FIR滤波器幅频特性,由于浮点小数在FPGA中实现得比较困难,且代价太大,因而需要将滤波器的系数和输人数据转化为整数,其中量化后的系统可以在Matlab主窗口中直接转化,对于输入数据,乘以28的增益用Altbus控制位宽转化为整数输入。
2.2.2 FIR滤波器模型的建立
根据FIR滤波器原理,可以利用FPGA来实现FIR滤波电路。DSP Builder设计流程的步是在Matlab/Simulink中进行设计输入的,即在Matlab的Simulink环境中建立一个MDL模型文件,用图形方式调用DSP Builder和其他Simulink库中的图形模块,构成系统级或算法级设计框图,如图2所示。
2.2.3 在Simulink中的仿真并生成VHDL代码
完成模型设计之后,可以先在Simulink中对模型进行仿真,可以通过Simulink中的示波器模块查看各个步骤的中间结果。输入信号采用800 Hz和1 600 Hz,幅值相同的两个正弦信号的叠加。仿真结果如图3所示。从仿真波形可以看出,通过滤波器之后,1 600 Hz的信号能够被很好地滤除。
双击SignalCompiler可对以上的设计模型进行分析,选择相应的芯片,将以上设计模块图文件“翻译”成VHDL语言。
2.2.4 Modelsim的RTL仿真
在Simulink中进行的仿真属于系统验证性质的,是对mdl文件进行的仿真,并没有对生成的VHDL代码进行仿真。事实上,生成VHDL描述的是RTL级的,是针对具体的硬件结构,而在Matlab的Simulink中的模型仿真是算法级的,两者之间有可能存在软件理解上的差异,转化后的VHDL代码实现可能与mdl模型描述的情况不完全相符。这就需要针对生成的RTL级VHDL代码进行功能仿真,仿真结果如图4所示。
仿真结果说明,在Modelsim中仿真结果和Simulink里的仿真结果基本一致,该滤波器有较好的滤波效果。可以看出,输入正弦波经过数字化过程以后,能够在Modelsim中还原出模拟波形.符合设计的要求,可以在QLtortusⅡ的环境下进行硬件设计。
2.2.5 滤波器在FPGA上的实现
在QuartusⅡ环境中,打开DSP Builder建立的QuartusⅡ项目文件,在QuartusⅡ中再进行仿真,由此可以看到符合要求的时序波形。然后指定器件引脚,并进行编译,到FPGA器件中,就可以对硬件进行测试,加上clok信号和使能信号,用信号发生器产生所要求的两个不同频率的正弦信号,就可以在示波器上看到滤波后的结果。需要设计不同的滤波器电路是仅修改FIR滤波器模型文件就可以实现,这样不仅避免了繁琐的VHDL语言编程,而且便于进行调整。
3 结 语
在利用FPGA进行数字滤波器开发时,采用DSPBuilder作为设计工具,能加快进度。当然,在实际应用中,受、速度和器件选择方面的影响,可能对其转化的VHDL进行进一步的优化。
[1]. MDL datasheet https://www.dzsc.com/datasheet/MDL_1721936.html.
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。