1 引言
霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。
霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。
霍尔线性器件的高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。
按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量。
按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。
2 霍尔效应和霍尔器件
2.1 霍尔效应
如图1所示,在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压,如图1中的VH,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。VH称为霍尔电压。
(a)霍尔效应和霍尔元件
这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压。
在片子上作四个电极,其中C1、C2间通以工作电流I,C1、C2称为电流电极,C3、C4间取出霍尔电压VH,C3、C4称为敏感电极。将各个电极焊上引线,并将片子用塑料封装起来,就形成了一个完整的霍尔元件(又称霍尔片)。
在上述式中VH是霍尔电压,ρ是用来制作霍尔元件的材料的电阻率,μn是材料的电子迁移率,RH是霍尔系数,l、W、t分别是霍尔元件的长、宽和厚度,f(I/W)是几何修正因子,是由元件的几何形状和尺寸决定的,I是工作电流,V是两电流电极间的电压,P是元件耗散的功率。由(1)~(3)式可见,在霍尔元件中,ρ、RH、μn决定于元件所用的材料,I、W、t和f(I/W)决定于元件的设计和工艺,霍尔元件一旦制成,这些参数均为常数。因此,式(1)~(3)就代表了霍尔元件的三种工作方式所得的结果。(1)式表示电流驱动,(2)式表示电压驱动,(3)式可用来评估霍尔片能承受的功率。
为了地测量磁场,常用恒流源供电,令工作电流恒定,因而,被测磁场的磁感应强度B可用霍尔电压来量度。
在一些精密的测量仪表中,还采用恒温箱,将霍尔元件置于其中,令RH保持恒定。
若使用环境的温度变化,常采用恒压驱动,因和RH比较起来,μn随温度的变化比较平缓,因而VH受温度变化的影响较小。
为获得尽可能高的输出霍尔电压VH,可加大工作电流,同时元件的功耗也将增加。(3)式表达了VH能达到的极限——元件能承受的功耗。
2.2 霍尔器件
霍尔器件分为:霍尔元件和霍尔集成电路两大类,前者是一个简单的霍尔片,使用时常常需要将获得的霍尔电压进行放大。后者将霍尔片和它的信号处理电路集成在同一个芯片上。
2.2.1 霍尔元件
霍尔元件可用多种半导体材料制作,如Ge、Si、InSb、GaAs、InAs、InAsP以及多层半导体异质结构量子阱材料等等。
InSb和GaAs霍尔元件输出特性见图1(a)、图1(b).
(a)霍尔效应和霍尔元件
(b)InSb霍尔元件的输出特性
(c)GaAs霍尔元件的输出特性
图1 霍尔元件的结构和输出特性
这些霍尔元件大量用于直流无刷电机和测磁仪表。
2.2.2 霍尔电路
2.2.2.1 霍尔线性电路
它由霍尔元件、差分放大器和射极跟随器组成。其输出电压和加在霍尔元件上的磁感强度B成比例,它的功能框图和输出特性示于图2和图3。
这类电路有很高的灵敏度和优良的线性度,适用于各种磁场检测。霍尔线性电路的性能参数见表3。
图2 霍尔线性电路的功能框图
图3 霍尔线性电路UGN3501的磁电转换特性曲线
型号 | Vcc/V | 线性范围/mT | 工作温度/℃ | 灵敏度S/mV/mT | 静态输出电压Vo/V | ||||
---|---|---|---|---|---|---|---|---|---|
min | typ | max | min | typ | max | ||||
UGN3501 | 8~12 | ±100 | -20~+85 | 3.5 | 7.0 | - | 2.5 | 3.6 | 5.0 |
UGN3503 | 4.5~6 | ±90 | -20~+85 | 7.5 | 13.5 | 30.0 | 2.25 | 2.5 | 2.75 |
型号 | IOUT/mA | Ro/kΩ | Icc/mA | 乘积灵敏度V/A·0.1T | 输出形式 | 引脚排列 | 外形结构 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
typ | max | 1 | 2 | 3 | 4 | ||||||
UGN3501 | 4.0 | 0.1 | 10 | 20 | - | 射极输出 | VCC | 地 | 输出 | - | CI/P |
UGN3503 | - | 0.05 | 9.0 | 14 | - | 射极输出 | VCC | 地 | 输出 | - | CI/P |
2.2.2.2 霍尔开关电路
霍尔开关电路又称霍尔数字电路,由稳压器、霍尔片、差分放大器,斯密特触发器和输出级组成。在外磁场的作用下,当磁感应强度超过导通阈值BOP时,霍尔电路输出管导通,输出低电平。之后,B再增加,仍保持导通态。若外加磁场的B值降低到BRP时,输出管截止,输出高电平。我们称BOP为工作点,BRP为释放点,BOP-BRP=BH称为回差。回差的存在使开关电路的抗干扰能力增强。霍尔开关电路的功能框见图4。图4(a)表示集电极开路(OC)输出,(b)表示双输出。它们的输出特性见图5,图5(a)表示普通霍尔开关,(b)表示锁定型霍尔开关的输出特性。
(a) 单OC输出 (b)双OC输出
图4 霍尔开关电路的功能框图
(a)开关型输出特性 (b)锁定型输出特性
图5 霍尔开关电路的输出特性
一般规定,当外加磁场的南极(S极)接近霍尔电路外壳上打有标志的一面时,作用到霍尔电路上的磁场方向为正,北极接近标志面时为负。
锁定型霍尔开关电路的特点是:当外加场B正向增加,达到BOP时,电路导通,之后无论B增加或减小,甚至将B除去,电路都保持导通态,只有达到负向的BRP时,才改变为截止态,因而称为锁定型。霍尔开关电路的性能参数见表4。
表4 霍尔开关电路的特性参数
型号 | VCC/V | Bop/mT | BRP/mT | BH/mT | Icc/mA | Io/mA | Vo/sat | Ioff/μA | 备注 |
---|---|---|---|---|---|---|---|---|---|
CS1018 | 4.8~18 | -14~20 | -20~14 | ≥6 | ≤12 | 5 | ≤0.4 | ≤10 | |
CS1028 | 4.5~24 | -28~30 | -30~28 | ≥2 | ≤9 | 25 | ≤0.4 | ≤10 | |
CS2018 | 4.0~20 | 10~20 | -20~-10 | ≥6 | ≤30 | 300 | ≤0.6 | ≤10 | 互补输出 |
CS302 | 3.5~24 | 0~6 | -6~0 | ≥6 | ≤9 | 5 | ≤0.4 | ≤10 | |
UGN3119 | 4.5~24 | 16.5~50 | 12.5~45 | ≥5 | ≤9 | 25 | ≤0.4 | ≤10 | |
A3144 | 4.5~24 | 7~35 | 5~33 | ≥2 | ≤9 | 25 | ≤0.4 | ≤10 | |
UGN3140 | 4.5~24 | 7~20 | 5~18 | ≥2 | ≤9 | 25 | ≤0.4 | ≤10 | |
A3121 | 4.5~24 | 13~35 | 8~30 | ≥5 | ≤9 | 20 | ≤0.4 | ≤10 | |
UGN3175 | 4.5~24 | 1~25 | -25~-10 | ≥2 | ≤8 | 50 | ≤0.4 | ≤10 | 锁定 |
2.2.2.3 差动霍尔电路(双霍尔电路)
它的霍尔电压发生器由一对相距2.5mm的霍尔元件组成,其功能框图见图6。
图6 差动霍尔电路的工作原理图
使用时在电路背面放置一块磁体,当用铁磁材料制成的齿轮从电路附近转过时,一对霍尔片上产生的霍尔电压相位相反,经差分放大后,使器件灵敏度大为提高。用这种电路制成的汽车齿轮传感器具有极优的性能。
2.2.2.4 其它霍尔电路
除上述各种霍尔器件外,目前还出现了许多特殊功能的霍尔电路,如功率霍尔电路,多重双线霍尔传感器电路,二维、三维霍尔集成电路等待。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。