基于单片机的光纤光栅解调器

时间:2007-09-24

  摘要:Bragg光栅解调系统是光栅传感器得以实用化的关键。根据光纤Bragg 光栅传感器的传感机理, 介绍了Bragg光栅解调系统的工作原理,建立了解调系统模型, 提出了实现Bragg 光栅解调的单片机解调系统, 给出了详细的软硬件设计方案。光栅解调系统测量能够达到±5pm,重复性误差为±8pm。
关键字:BRAGG光栅 F-P解调 单片机 89C52

  光纤光栅传感器的应用是一个方兴未艾的领域,有着非常广阔的发展前景。目前限制光纤光栅传感器大量实际应用的主要障碍就是传感信号的解调。光纤光栅传感解调方法有许多,但是能够实际应用的解调产品并不多,而且价格昂贵。因此研究开发适于实际工程应用的解调系统,降低解调系统的成本,是使光纤光栅传感器能够在实际工程应用中得到推广的关键问题。

  有鉴于此,为了满足工程应用的需要,本文提出了一种基于单片机的光纤光栅解调技术,即利用目前应用极为广泛,价格比较便宜的单片机作为信号采集和处理的MCU,开发一种较高的、廉价的、便携的、能进行快速测量且能方便获取所测参变量大小的解调器。为了解决了单个单片机速度较慢的问题,系统中采用双CPU,其中一个单片机完成信号解调的算法,而另一个单片机完成逻辑控制,人机接口和与上位机的通信,通过双口RAM实现双机数据共享。

 

1、解调系统结构和原理

  解调系统总体结构图如图1所示。主要由三部分组成,Bragg光栅(测量光栅),光纤光栅解调器,计算机。其中光纤光栅解调器可以细分为2个部分,模拟电路部分和数字电路部分,模拟电路部分的功能是把Bragg光栅(测量光栅)受到的应变或者温度变化变成相应的电信号,数字部分把电信号转换成上位机能直接使用的数字信号,可以是波长值也可以是温度或者应变值,而实现这个功能的MCU采用的就是单片机。

  解调系统的解调原理是基于可调谐法布里-珀罗腔(F-P解调)的工作原理。用于Bragg光栅传感信号解调的光纤F-P腔滤波器实际上是一个压控的光带通滤波器,通常用压电陶瓷作为F-P 腔腔长变化的驱动元件。给压电陶瓷施加一个扫描电压, 压电陶瓷产生伸缩, 从而改变F-P 腔的腔长, 使透过F-P腔的光的波长发生改变。通过探测器检测透射光强度,当探测器探测到光强时给压电陶瓷施加的电压就对应着FBG 的反射波长。这样给Bragg光纤光栅传感器注入光信号,将从FBG 传感器反射回来的光加到光纤F-P腔滤波器的输入端,通过给光纤F-P腔滤波器的压控端加上一个三角形的扫描电压,则在光纤F-P腔滤波器的输出端即可得到一个与输入光光谱相对应的时间域电信号。这些时域信号经过放大电路和比较电路的整形,就得到了一系列的脉冲信号,我们在这些脉冲信号中加入一些固定波长和位置的标准脉冲信号,那么这些脉冲信号中的各个脉冲对于标准脉冲的相对位置就包含了FBG传感器反射光的光谱信息。图2指示了这个解调过程。再通过单片机构成的电路把得到的脉冲转换成波长值。

2、单片机解调系统的构成和工作方法

  单片机解调系统的首要目的就是把这些脉冲信号处理成相对应的波长值。通过模拟部分的解调我们得到包含测量光栅和标准光栅在扫描周期内相对位置的脉冲信号,标准光栅对应一个固定的波长,而且它对应的脉冲信号在每个扫描周期内的位置又是固定的(标准光栅用恒温电路来保持波长恒定),那么如果能得到各个脉冲信号的相对位置值,再通过插值的算法可以得测量光栅的波长值。

 

  在本解调系统中采用的是武汉理工光科股份有限公司生产的光纤光栅作为测量光栅,基于F-P腔原理的波长选择器作为解调腔,测量的范围能够达到30nm,三角波扫描信号的周期为1s,测量的频率1Hz。把三角波扫描信号的上升沿分成能够达到设计的有限多个计数点,这样就可以用单片机读出FBG1FBG2…..FBGn光栅阵列及标准光栅脉冲信号在三角波上升沿中的位置值了。另一个单片机的功能就是利用这些值算出波长,并与计算机进行数据通讯。电路图如图所示。这里单片机选用是89C52,用4060产生一个稳定的计数脉冲,当三角波开始时1号单片机计数,有脉冲到来时,记下计数器的值并存入片内RAM;三角波到点时计数器清零,把位置值送入双口RAM,然后等待下计数。CPU1开始计数时CPU2把数据从双口RAM中取出,通过插值或其他的算法计算出脉冲对应的波长值或者温度值并与计算机通讯。

 

                            

                       电路简图

   

  我们可以通过单片机的其它的I/O口同时输入更多的测量脉冲。改进光路和模拟电路部分,就可以制作2通道、4通道的光纤光栅解调仪,提供更多的测量点,而数字电路完全不需改动,只需对软件部分进行调整即可。

3、系统分析和数据处理

  单片机要完整正确的记下每个脉冲,那么它的计数、传送指令要在每个脉冲的脉宽内完成,如果脉冲宽度只有1个计数单位,即计数、传送指令需要在约为10微秒的时间内完成,AMTEL的89C52工作频率能达到24MHz, 这时其时钟周期为0.5微秒,那么只要计数、传送的指令周期不超过20个时钟周期,就能达到要求,合理的读写程序显然是能够满足这个要求的。而通常脉冲的宽度一般远大于1个计数单位,所以脉冲的变化是能够实时记录的。同时2号单片机有1s的时间把数据从RAM取出,算出脉冲的中值,然后进行插值计算,时间也是足够的。如果算法过于复杂,例如采用拉格朗日算法等等,也可以把位置值传送给计算机进行数据处理。

  把数据从单片机传送给计算机的过程中数据可能会出现错误,通讯程序中必须加入纠错处理,可以采用奇偶校验的方法,例如单字节校验或者多个字节校验等等。同时为了防止光栅位置值的偶尔突变,有必要对位置值进行平滑处理。通过以上的处理方法,计算机能够得到一组正确、稳定的数据。为了减小F-P腔的漂移及系统非线性对位置值的影响,我们采用标准光栅来与测量光栅进行比较计算,可以采用线性算法进行计算。但是在实际的运用中,发现待测光栅离标准光栅较近时,测量值越准确;较远处则误差相对较大。为了进一步提高,可以采用2标准、5标准或者梳状滤波器来进行分段线性插值计算,这样就能大大提高测量的,当然也可以采用拉格朗日算法或者多次项公式等更复杂的方法来进行波长计算。在我们的仪表中采用的是5标准光栅的拉格朗日算法来计算波长,温度的测量能达到±1℃。

 

4、结束语

  脉冲的相对位置值与波长的关系目前无法由理论知识推导得到, 但是可以通过实验, 用数理统计的方法找出变化规律从而找出它们之间的对应关系。利用此对应关系, 在单片机中进行有关数据处理, 从而得到所测温度或应力的大小。目前我们采用拉格朗日算法,并使用一些合适的数据处理和标定的方法,就目前解调仪的工作情况来看,效果还是可以的,测量能够达到±5pm,重复性误差为8pm。为了提高解调仪的工作频率,提高解调仪的适用性,也可以采用基于DSP或者DSP+ARM的解调电路,但成本相对就要高些。

  FBG 光栅有广阔的应用前景, 在通信、建筑、机械、医疗、航天、航海、矿业都能发挥重要作用,有关于FBG 光栅的理论研究到目前为止已取得了很大成就。采用合适的解调技术,降低光纤光栅的使用成本,就能够推动光纤光栅传感器在实际工程中得到广泛的应用。


  

参考文献:

[1]. 89C52  datasheet https://www.dzsc.com/datasheet/89C52+_105388.html.


上一篇:基于PDIUSBD12芯片的USB接口设计
下一篇:基于M68HC08的LIN节点设计与实现

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料