Flash编程方法
常见的Flash编程方式
Flash在正常使用前必须写入用户程序,传统上有3种编程方法:由供应商出货前把程序代码写入Flash,编程器编程和在系统编程。
第1种方法不能满足用户更改代码的需求,所以在开发阶段不宜采用。当使用编程器编程时,要求Flash固定在PCB板前必须把用户程序写入片内。因此,现在一般都优先考虑在系统编程方法,首先应确定所选的DSP是否支持在系统编程。现行的在系统编程的方法一般是先把待加载程序(用户程序)的.out文件(COFF格式)转成HEX格式,然后去掉HEX格式文件的文件头,再通过烧写程序写到Flash里去,也可以不进行COFF格式到HEX格式的转换这一步,把COFF文件作为源文件,去除文件头信息后将其写入Flash。
本文方法的编程原理
本文的实现方法比较简单,首先把用户程序映射到系统RAM,再把用户程序作为数据直接从RAM搬入Flash中。
首先在CCS上完成用户程序,生成可执行的.out文件,将该文件设为文件1进行加载;然后加载烧写程序的.out文件,将其设为文件2;运行文件2,通过它把文件1烧入Flash。
操作步骤非常简单,这里要说明几点,首先,2个.out文件各自独立,文件2加载后,文件1成为数据,CCS在运行时,运行的是加载的程序,也即文件2。其次,文件2与文件1映射到RAM中的物理空间各自独立,也就是文件2不能映射到文件1已影射的地方,如果发生重叠,文件2的内容就会覆盖原先文件1映射到该地址空间的内容,写入Flash的内容就会发生错误。再次,用户程序里包括了二次加载程序,以在自举时把用户程序从Flash还原到RAM中。
二次加载和Bootloader
要保证用户程序的正确运行,仅把程序写入Flash是不够的,必须保证上电后,程序能够从Flash中正确恢复到RAM,系统上电工作步骤如图1所示。
DSP首先自检,得到程序的加载模式。在C6000中主要有2种模式,一种是主机加载模式,也即DSP从0x0000 0000开始执行程序;另一种是ROM加载模式,该模式又有8位、16位、32位几种,不同的DSP略有不同,这里选用8位ROM模式,工作时,DSP先从地址0x9000 0000开始,把0x9000 0000-0x9000 0400这1K(在C62xx中是64K)的数据搬到0x0000 0000-0x0000 0400,然后再从0x0000 0000开始执行程序,这加载由DSP自行完成,但是1K的程序作为用户程序显然不够,因此,这1K的程序要做成加载其,也就是手工写的Bootloader,利用它把用户程序从Flash搬入RAM。加载器搬运用户程序又是加载,因此把这个过程统称为二次加载。
Bootloader要完成两项功能,,把其他程序搬到指定的地址,第二、跳转到用户程序入口,这里要先修改ISP,再跳转到复位中断,因此在Bootloader的总是一条跳转指令。由于Bootloader在Flash中的位置是0x9000 0000-0x9000 0400,而Bootloader又是放在用户程序里的,因此,为了方便烧写程序把Bootloader写到该位置,这里在用户成程序的.cmd文件中把Bootloader定位在程序段的起始位置。
编程方法实现
系统配置和参数设置
TMS320DM642是TI公司的一款视频图像DSP,工作时钟可达到600MHz,程序存储器可调至272M×8位,其EMIF接口分4个空间,即CE0-CE3,Flash映射到CE1空间,其地址为0x9000 0000-0x90400000,上电时采用8位ROM加载方式。
由于4MB的Flash ROM有22根地址线,而DM642只有20根地址线,因此加入FPGA,对Flash进行分页,这里分8页,每页512KB,每页内含8块,每块64KB。
Am29LV033C有多条内存指令,可以实现芯片ID的读取、软件复位、整片擦除、块擦除等。在这里主要介绍烧写时用到的指令,其擦写命令如表1所示,表中的XXX表示任意地址,SA为块地址,即地址线的第16位到21位,PA为烧写地址,PD为烧写数据。待烧写程序(用户程序)为USER.out,大小为2M;烧写程序为FBCT.out,大小为4K,地址分配如表2所示。
编程过程
步,对整个Flash进行一遍擦除,因此Flash在编程时只能把“1”置为“0”,而不能“0”置为“1”。
第二步,判断擦除结束。通过DQ6、DQ7均可完成判断,当DQ6位不再跳变时说明擦除结束。这里通过读取一位数据是否为“0xFF”来完成判断。
第三步,进行软件复位。软件复位使Flash处于就绪状态,当Flash在进行擦除,编程时软件复位信号无效。
第四步,取得编程地址。如果地址超过地址则编程结束。
注意事项
对于不同的DSP,不同的Flash,在实现时可能不一样,这里有几个问题必须注意:
(1)文件1和文件2的.cmd文件要分配好各自的地址,地址空间不能重叠。
(2)不是每个DSP都可以实现在系统编程,如TMS320C6204就不行,而C621x,C64x等就可以。原因在于Flash在编程时速度较慢,一般为μs级,所以需要WE#信号的有效时间较长。但是,一般的WE#有效时间都只有几十ns,这么短的时间不足以让DSP把内容写进Flash。C64x等之所以能实现在系统编程,是因为在编程时DSP自动延长了编程的有效时间。
(3)如果用户程序不含加载器程序,那么用户程序的目的地址就不能从Flash的前1K的地址开始。 (4)不同型号Flash的编程时序和指令可能会有所不同,编程之前要弄清该Flash的编程时序和指令。如果Flash要求有偏移地址,就需要加上基地址。
(5)对于程序的未初始化段不必烧入Flash,可以参考.map文件,里面对于各段有详细说明。
结语
利用上面的方法,本文在TMS320DM642平台中通过JTAG仿真头,成功地实现了在系统编程,为程序的调试提供了一种非常方便的手段,也为用户程序的升级提供了一种简单异行的方法,同时这个方法也在C6211环境下成功实现,其他DSP同样可参考本方法。
[1]. PCB datasheet https://www.dzsc.com/datasheet/PCB_1201640.html.
[2]. ROM datasheet https://www.dzsc.com/datasheet/ROM_1188413.html.
[3]. TMS320DM642 datasheet https://www.dzsc.com/datasheet/TMS320DM642_14462.html.
[4]. Am29LV033C datasheet https://www.dzsc.com/datasheet/Am29LV033C_678248.html.
[5]. TMS320C6204 datasheet https://www.dzsc.com/datasheet/TMS320C6204_891037.html.
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。