1引言
在集成电路设计过程中,模拟方法是应用多的验证时序正确与否的手段,然而,模拟方法在微系统芯片(SoC)时代正面临严竣的挑战。传统的逻辑模拟方法虽然比较快,但需要输入向量作为激励,给使用带来很多不便;更为严重的是其不够高,不能处理SoC时代越来越严重的互连线的耦合电容、电感效应。电路模拟方法虽然能非常地计算SoC时代的各种效应,但其速度太慢,容量也太小。静态时序分析技术通过提取整个电路的所有时序路径,计算信号沿(上升沿或下降沿)在传播过程的延时,然后检查在坏情况下电路中是否存在建立时间和保持时间不满足要求的器件,从而确认被验证的电路是否存在时序问题。它们又分别通过对路径延迟和路径延迟的分析得到。静态时序分析不需要输入向量、运行速度快、占用内存少,因而成为SoC时代主要的时序验证手段。延时计算和长/短路径分析是静态时序分析的关键。由于互连线结构 [1]对门延时的影响非常大,必须在门延时模型中充分考虑这一因素才能确保静态分析结果的正确性。 本文提出新的Π模型方法,结合了门的等效电容[3]来计算门的延时,我们的方法结合门的互连线负载的拓扑结构和门负载三阶矩求解的方法,采用[4]中提出的等效电容的求解公式,求出门延时计算模型,相比上述两种方法,在静态时序分析中更为合理。 2新的门延时模型 2.1 新的门延时模型 图1中Y(s)表示准确的RC树的驱动点导纳函数,在s=0的Taylor展开式表示如下: 将门的输出的RC树的互连线负载等效负载为 Π模型,如图2。 通过Π模型得到的门输出驱动点导纳函数和Y (s)的前三项对比得出: 尽管以往模型能够很好地表示等效的输出驱动点导纳函数,但是利用等效电容计算的门延时结果并不理想, 所以我们提出了新的模型。模型中电容的值也采用门输出驱动点导纳函数和 RC树的驱动点导纳函数前三阶近似相等原理[4] 推出来,设该驱动点导纳函数为Yπ的Taylor展开式: 考虑到互连线金属电阻的屏蔽效应以及互连线的分布特性,对于模型中的电阻R1而言,如图3所示,需要求RC树的等效电阻,采用的方法是,将分支中的接地电容去掉,而保留串联的电阻,这时电路中的电阻连接主要以节点之间的串并联的形式出现,则等效电阻 Req, 2.2 等效电容模型 td、t f分别表示输出门延时和门输出的下降时间,它们是由 k因子表达式来决定的;tt表示输入信号的传输时间,它是已知的。k因子表达式: 式中CL表示门负载所带电容,各个及表示k因子表达式的参数[3]。 3实验结果 我们选取了与门(and),在TSMC库0.18mm工艺IP库中的代号(AND2×2),测试电路我们选取了分别为不具有分支的测试电路1(如图5)和具有分支测试电路2(如图6的主电路及如图7的分支电路),这样的分支电路有相同的两路,并且这两个分支同时接于主电路图6的1,2,3,4,5,6节点处。在测试过程中,我们改变门的输入传输时间(tt)和负载电容值(C),并且采用我们的模型,和Hspice仿真结果,以及O’Brien/Savarino Π模型(我们在这里称作Y表达式法), 开端RCΠ模型(我们在这里称作1/6, 5/6法)结果进行比较,不同测试电路的测试结果如表1~表4。
除了上述关于与门(and)的测试外,我们还做了反相器(inverter),或门(or),加法器(add)的测试,同时我们也使用synopsys库 0.18mm工艺IP库中相同器件进行测试,都有相似的结果和结论。但是我们也发现,如果上述三种模型测试结果与Hspice的结果相比误差都较小时(大致5%~10%),我们的模型并不明显比其他模型优越。这点可以由下面这个例子说明,我们对工业界中一实际电路进行测试,其门负载有100个电阻, 100个电容的有分支电路(简称有分支)和一个门负载14个电阻和14个电容的无分支电路(简称无分支),其测试结果如表5。 4结论 静态时序分析中的门延时模型对于正确进行静态时序分析有着重要的意义,我们结合了等效电容和门负载的互连线拓扑架构两个概念, 提出了新的门延时模型。通过实验结果说明,它克服了以前门延时模型过于悲观和乐观的计算结果,较好地保证了静态时序分析的。下一步的工作可以集中于门负载是互连线时,存在串扰的情况下的模型,这样可以使模型更加全面。 | |||||||||||
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。