时序问题的解决
FPGA可以接受的时钟和所允许的时序远远低于ASIC。但作为ASIC产品而言,在设计的时候又往往采取较高的时钟速率。由于ASIC时钟树与布线相对自由,故对于高速率设计解决起来相对容易。对于Xilinx FPGA而言,尽管采用了90nm工艺的Virtex-4可以支持的性能高达500MHz,但是其时钟树和布线资源相对固定,因此一旦在编译和布局布线的时候处理不当,就会产生时序冲突(timing violation)。产生时序冲突的结果,轻则使设计的逻辑与实际布局布线后的网表不一致,重则导致布局布线根本无法通过,从而致使验证无法进行。
我们在解决时序问题的时候采取了五种不同的方法。其中一种方法是应在设计中就加以注意,两种在综合的时候进行,还有两种在布局布线时采用。
设计过程中注意时序问题
若希望设计的产品能够在FPGA验证平台上顺利的完成验证,在设计过程中就需要注意尽量多的使用FPGA的内部资源,如DSP48,乘法器,RAM,DCM等。
在我们的设计中有不少滤波器,这些滤波器正好可以使用DSP48这个模块。该模块如图1所示,为乘加结构。滤波器若不使用这种模块,则需进行大量的乘、加运算。这样不但浪费资源,而且很容易导致时序无法满足要求。而如果使用这样的模块,则基本上所有的滤波器都不再处于“差路径”上。
对于乘法器,如果使用slice搭建不仅浪费资源,而且性能差,位宽一旦比较宽就会导致时序出现问题。Xilinx的ISE中配有Core Generator这个工具。通过该工具可以生成需要的乘法器。使用这些乘法器来代替普通的乘法器,可以达到满意的效果。除了乘法器,还可以使用该工具产生RAM和DCM等。
图 1 DSP48示意图
综合过程解决时序问题
我们使用Synplicity公司的Synplify工具进行综合,这是业界通常使用的综合工具之一。选择该工具主要的原因在于它与Xilinx的FPGA配合的很好。我们做过实验,通过该工具综合产生结果报表,再通过ISE产生真实布局布线后的报表。对这两个报表的时序估计部分进行对比,我们发现两者之间惊人的相似,差路径之间的差别不超过1ns。
综合的时候需要设置约束,重要的是时钟约束。这个约束限制了系统工作的频率。为了降低系统对于时钟抖动的敏感性,我们采取的个方法是在设置时钟约束的时候将此约束值设的略高于实际的时钟频率。这样做有一个前提,那就是在综合后不得有负的时钟余度(time slack)出现。当没有负的时钟余度出现的时候,提高时钟约束可以有效避免因时钟抖动而引入的时序问题,但是如果因为提高了约束中时钟频率,而导致负的时钟余度的出现,那么有可能导致在布局布线过程中产生时序冲突而无法正常布局布线。在这种情形下,就不宜提高约束中的时钟频率。
在综合中采取的第二个方法是使用综合工具提供的pipeline和retiming功能。这些功能可以调整寄存器的位置,使之在不改变逻辑的前提下,将寄存器的位置调整的更加合理,如图2所示。这个功能主要用于组合逻辑过长且不合理的情况下。当然,如果某些乘法器位数过宽而结果没有寄存的时候也会导致组合逻辑时序紧张。当发生这种情况而retiming功能又无法纠正时,就需要设计者在做设计的时候对乘法器的输出结果做一拍寄存,同时其余的控制逻辑也要做相应的调整。
图 1 DSP48示意图
布局布线阶段解决时序问题
当综合工作完成,进入布局布线的阶段后,仍然有两种方法可以改善逻辑时序问题。
种是手动增加并调整BUFG(Global Clock Buffer)。BUFG是Xilinx的全局时钟资源,所有时钟树的起点都是BUFG,位于FPGA的北极和南极。当布线后仍有负的slack时,有可能是某些当作时钟使用的信号没有被放上时钟树,此时就要手动将这些信号放上BUFG。若遇到门控时钟,还应该使用BUFGMUX资源。另外,在Virtex-4中,北部的BUFG主要负责北部的时钟,南部的BUFG负责南部的时钟。在我们的项目中,共有十余个时钟,因此,BUFG位置的选择也很关键。有些时候,工具不能解决一切问题,只有手动调整BUFG的位置,或将BUFG的位置信息写入用户约束文件才可以取得较满意的效果。
在Virtex-4中共有16个BUFG,若都被使用且经手动优化后仍不满足要求,那么还可以使用ISE提供的Floorplanner工具,对设计的各个模块手动进行位置摆放,使各个模块尽量靠近自己所使用的时钟树。
代码一致性
对于经过FPGA验证的代码而言,担心的是经过验证的代码和进行流片的代码不一致。导致这个现象产生的原因是多种的,其中版本控制和由于FPGA、ASIC专用器件不一致而引起的问题是常见的两个问题。
对于经过FPGA验证的代码,为了能够使被测代码可以顺利的在FPGA进行验证,一般都采取了FPGA专用的器件。这些FPGA专用器件在ASIC中是不存在的。为了解决这个问题,我们通常采取“假代码”(Fake Code)解决。
顾名思义,“假代码”就是在代码中保留FPGA专用器件的名称和接口,但是在FPGA和ASIC中使用不同的器件内核。该器件若在FPGA下使用则使用FPGA专用器件,若在ASIC下使用,则使用自己编写的代码。尽管这种做法仍然无法保证代码的完全一致,但是却限度的避免了代码的差别。
结语
究竟使用EDA 仿真工具还是使用FPGA进行流片前的功能验证一直是业内讨论的热点话题,不同的设计、测试人员也有自己的观点。本文针对使用FPGA进行验证测试所遇到的一些问题提出了相应的解决方法。■
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。