1.3 同步原型与共享内存
多进程应用程序需要共享内存和外设资源,为避免竞争采用了互斥的方法保证资源在同一时刻只被一个任务访问。Linux内核用一个系统调用来决定一个线程阻塞或是继续执行来实现互斥,在线程继续执行时,这个费时的系统调用就没有必要了。Linux2.6所支持的Fast User-Space Mutexes 可以从用户空间检测是不是需要阻塞线程,只在需要时执行系统调用终止线程。它同样采用调度优先级来确定将要执行的进程[4]。 多处理器嵌入式系统各处理器之间需要共享内存,对称多处理技术对内存访问采用同等优先级,在很大程度上限制了系统的可量测性和处理效率。Linux2.6则提供了新的管理方法——NUMA(Non Uniform Memory Access)。NUMA根据处理器和内存的拓扑布局,在发生内存竞争时,给予不同处理器不同级别权限以解决内存抢占瓶颈,提高吞吐量。
1.4 POSIX线程及NPTL
新的线程模型基于一个1:1的线程模型(一个内核线程对应一个用户线程),包括内核对新的 NPTL(Native POSIX Threading Library)的支持,这是对以前内核线程方法的明显改进。2.6内核同时还提供POSIX signals和POSIX high-resolution timers。POSIX signals不会丢失,并且可以携带线程间或处理器间的通信信息。嵌入式系统要求系统按时间表执行任务,POSIX timer可以提供1kHz的触发器使这一切变得简单,从而可以有效地控制进度。
1.5 微控制器的支持
Linux2.6内核加入了多种微控制器的支持。无MMU的处理器以前只能利用一些改进的分支版本,如uClinux,而2.6内核已经将其整合进了新的内核中,开始支持多种流行的无MMU微控制器,如Dragonball、ColdFire、Hitachi H8/300。Linux在无MMU控制器上仍旧支持多任务处理,但没有内存保护功能。同时也加入了许多流行的控制器的支持,如S3C2410等。
1.6 面向应用
嵌入式应用有用户定制的特点,硬件设计都针对特定应用开发,这给系统带来对非标准化设计支持的问题(如IRQ的管理)。为了更好地实现,可以采用部件化的操作系统。Linux2.6采用的子系统架构将功能模块化,可以定制而对其他部分影响。同时Linux2.6提供了多种新技术的支持以实现各种应用开发,如Advanced Linux Sound Architecture(ALSA)和Video4Linux等,对多媒体信息处理更加方便;对USB2.0的支持,提供更高速的传输,增加蓝牙无线接口、音频数据链接和面向链接的数据传输L2CAP,满足短距离的无线连接的需要;而且在2.6内核中还可以配置成无输入和显示的纯粹无用户接口系统。
2 应用研究
在S3C2410开发板上移植嵌入式Linux 2.6.11.7内核系统,应用于构建H.264多媒体系统。
2.1 建立交叉编译环境
在RedHat9的主机上进行内核移植开发,首先需要建立交叉编译环境。由于2.6内核中采用了一些新的特性和指令,需要采用较新的工具集,采用binutils-2.15、gcc-3.4.2、glibc-2.2.5、linux-2.6.8、glibc-linuxthreads-2.2.5来建立交叉编译工具链,建立之后将工具链路径加入系统路径$PATH中。
2.2 内核修改
Linux 2.6.11.7内核加入了对S3C2410芯片的支持,不再需要任何补丁文件。修改内核源码中Makefile的交叉编译选项ARCH=arm,CROSS_COMPILE=arm-linux-。针对硬件配置,需要在arch/arm/mach-s3c2410/devs.c或者smdk2410.c中添加FLASH的分区信息s3c_nand_info,如表1。
然后在s3c_device_nand中增加.dev={.platform_data= &s3c_nand_info},在arch/arm/mach-s3c2410/mach-smdk2410.c中的__initdata部分增加&s3c_device_nand,使内核在启动时初始化NAND FLASH信息。
2.3 内核编译加载
对内核进行适当的配置是一个量体裁衣的过程。由于2.6内核会根据本地系统配置进行初始设置,可以导入内核源码默认s3c2410的配置文件,方便加载内核基本配置,然后再选择所需选项。对MTD配置选择支持MTD设备驱动以及NAND FLASH驱动;选择支持要用到的各类文件系统(DEVFS、TMPFS、CRAMFS、YAFFS、EXT2、NFS)以及网络设备和协议,本系统加载了网络芯片CS8900以及USB支持;在H.264多媒体系统中还需要加载Frame buffer以支持LCD显示功能。使用交叉编译工具编译内核源码后, 会在arch/arm/boot/下生成名为zImage的内核映像,在Boot loader的命令提示模式下使用命令完成内核加载到开发板的存储设备FLASH中。编译过程(相对以前版本的编译过程,2.6内核编译有所简化):
make mrproper
make menuconfig(字符界面,或者用make xconfig图形界面,但需要Qt库的支持,而make gconfig则需要GTK库的支持)
make
make bzImage
2.4 文件系统
Linux采用文件系统组织系统中的文件和设备,为设备和用户程序提供统一接口。Linux 支持多种文件系统,本系统使用CRAMFS格式的只读根文件系统,而将FLASH中的USER区使用支持可读写的YA FFS文件系统格式,方便添加自己的应用程序。
在根文件系统中,为保护系统的基本设置不被更改,采用CRAMFS格式。采用DEVFS来实现基本设备的建立挂载,同时使用BusyBox也是一个缩小根文件系统的办法,提供了系统的基本指令;还需要建立一些必备的目录,添加所需配置文件,如fstab、inittab等;还有一个重要的工作就是添加系统应用必备的动态函数库。使用生成工具mkcramfs 将整个根文件目录里的内容制作成映像文件。
mkcramfs rootfs rootfs.ramfs
YAFFS文件系统格式的支持需要将驱动加入到内核代码树下fs/yaffs/,修改内核配置文件,就可以在内核编译中加载对该文件系统的支持。使用mkyaffs工具将NAND FLASH分区格式化为YAFFS分区,将mkyaffsimage生成的应用程序镜像烧写进YAFFS分区,在启动时通过写入fstab自动加载YAFFS分区即可。
2.5 网络设备驱动
系统中采用CS8900A的10M网络芯片,它使用S3C2410的nGCS3和IRQ_EINT9,相应修改linux/arch/arm/mach-s3c2410/irq.c,并在mach-smdk2410.c的smdk2410_iodesc[]中增加{SMDK2410_ETH_IO,S3C2410_CS2, SZ_1M, MT_DEVICE},内核源码中加入芯片的驱动程序drivers/net/arm/cs8900.h和cs8900.c,并且配置网络设备驱动的Makefile和Kconfig文件,加入CS8900A的配置选项,这样可以在内核编译时加载网络设备的驱动。
在Linux2.6应用的同时,也要看到其与以前版本内核比较存在的一些问题。在内核的编译时间、内核镜像大小、内核占用RAM空间大小、系统启动时间相对Linux2.4而言都存在不同程度的不足,但在硬件条件日益进步的现今可以接受,而且一部分也是由于功能加强必然带来的。虽然Linux并非一个真正的实时操作系统,但2.6内核的改进能够满足大部分的应用需求,所以Linux2.6内核将会在嵌入式系统领域大展身手。
参考文献
1 Alessandro Rubini,Jonathan Corbet著,魏永明,骆刚,姜 君译。Linux设备驱动[M]. 北京:中国电力出版社,2004
2 Anand K Santhanam. 走向Linux2.6[EB/OL]. Dec. 2003. https://www-128.ibm.com/deve loperworks/cn/linux/ l-inside/index.html
3 S3C2410X 32-Bit RISC Microprocessor User?s Manual[Z]. SAMSUNG Electronics. Revision 1.2
4 Brandon White. Linux 2.6: A Breakthrough for Embedded Systems[EB/OL].https://linuxdevices.com/articles/AT7751365763.html Sep.9,2003
5 Karim Yaghmour. Building Embedded Linux Systems[M]. O'Reilly. April, 2003
6 PC datasheet https://www.dzsc.com/datasheet/PC+_2043275.html.
7 CS8900A datasheet https://www.dzsc.com/datasheet/CS8900A_593567.html.
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。