一种较大驱动电流的锑化铟磁阻式齿轮转速传感器设计

时间:2007-11-27
摘 要: 本文介绍一种采用锑化铟-铟共晶体磁敏电阻作为敏感元件的半导体薄膜型齿轮转速传感器,得出了传感器检测距离与磁阻输出信号的关系曲线。传感器驱动级采用推挽输出的形式,输出矩形脉冲负荷能力强,输出拉电流可达200mA以上,当温度在-30℃~+70℃之间变化时,信号处理电路输出依然稳定可靠。
关键词:锑化铟-铟;齿轮转速传感器;推挽驱动
中图分类号:TP212.12   文献标识码:A  
 
 一、引言
  锑化铟齿轮转速传感器是一种测量旋转物体转速的装置,由敏感元件和处理电路组成,其中,敏感元件采用半导体锑化铟薄膜磁阻元件制成。这种传感器具有灵敏度较高、结构简单、生产成本低、应用范围广等优点[1][2],具有较强的实用性。但是用半导体锑化铟生产的转速传感器往往也存在一些缺陷,如半导体材料温度系数较大,环境温度改变时可能导致输出误报现象;此外,在实际生产中,还要考虑锑化铟磁阻的静态阻值允许有一定不对称性和离散性。基于以上两个特点,本文有针对性地设计了电路,抑制了温漂的影响。

二、锑化铟齿轮转速传感器的工作原理
    半导体锑化铟InSb转速传感器的工作原理的理论基础是磁阻效应,即磁感应强度变化引起磁敏电阻的电阻率改变。对于n型半导体材料,当两种载流子迁移率相差相当悬殊而且空穴迁移率小到可忽略不计时,其电阻率的变化可表示为[3]:
    (rB-r0)/r0=0.273mn2B2   (1)
    式中:B—磁感应强度;
    rB、r0—磁感应强度分别在B和0时材料的电阻率;
    mn—半导体材料中电子迁移率。
    InSb材料具有电子迁移率高的特点,室温下质量良好的n型InSb的电子迁移率可高达78000cm2/V•s,是制作磁敏电阻的合适材料。如果用薄膜工艺制造的锑化铟铟(InSb-In)共晶体薄膜代替锑化铟单晶体,可以克服用传统工艺制磁阻元件时须采用把单晶切片再研磨减薄工艺的许多缺点,节约了材料,提高了效率。
    锑化铟磁头工作原理见图1,它由两个InSb­-In共晶体磁敏电阻 MR1和MR2、基片和永磁体等构成。永磁体中发出的磁力线在空间中是发散的,有一部分穿越基片和磁敏电阻到达表面,且分布基本对称。当齿轮划过磁头某一磁阻附近的瞬间,磁力线密度在这个磁敏元件处增加,而在另一个磁敏元件处减小,从而导致两个磁阻元件的阻值一个增加,一个减小。由于磁头由稳压源供电(如图2),由欧姆定理可知:在两个磁敏元件连接点处输出电压Va发生变化,即磁头输出随之变化的电信号,这个信号的频率可以反映齿轮旋转快慢。

三、信号处理电路的设计
    信号采集电路采用磁阻三端差分型输出电路(如图2),这种信号采集电路具有输出信号较大和较强抑制温漂的能力。

    信号处理电路采用阻容耦合型差动放大电路(如图3),IC1和IC2为两级差动放大,改变R3、R4、R5和R6的阻值可以调整放大倍数。运放的静态电压由R1和R2来调节,考虑到通常磁头内的上、下两个磁阻元件不完全平衡,MR1与MR2的阻值会有10%以内的差别,在+5V的工作电源下,信号采集的输出端电压会在2.4V~2.6V之间。为了减少信号在磁头与运放之间阻容耦合中的损失,一般把集成运放静态电压设置为低于2.5V,取2V比较合适。IC3为电压比较器,电阻R7和R8用来调节比较器基准电压。磁头输出的微弱信号经过两级电压放大和电压比较器后输出为矩形脉冲。
  比较器输出的脉冲驱动电流有限,一般不采用此脉冲直接驱动负载,而是经过一驱动级电路。比较器输出脉冲作为驱动级的输入信号,再由驱动级输出脉冲向外提供驱动信号。目前常用的驱动方法是集电极开路驱动法,而实际上这种方法存在驱动电流小和输出的高电平不稳定等缺点。下面介绍一种采用TTL推挽输出的驱动电路。

四、采用TTL推挽输出的驱动电路的测量实验
    下面通过实验分别对磁头输出信号大小与检测距离之间的关系、传感器的驱动能力、传感器温度稳定性等进行测试。

1、磁头输出信号大小与检测距离关系实验
    随机选出三个图1所示的锑化铟磁头,磁头灵敏度均为3.2倍(B=0.3T),分别标记为1#~3#。改变检测距离,分别记录不同检测距离时磁敏电阻输出的信号峰值Vpp,得出的磁敏电阻输出信号与检测距离的关系如图4。

    图中曲线下降较快,说明磁敏电阻输出信号强度随着距离增加而迅速降低。

 2、驱动能力测试
    传感器输出脉冲的带负载能力直接关系到传感器的应用范围。本实验是为了测量当传感器输出脉冲为高电平时带负载的能力,即拉电流的大小。用一个可调电阻RL充当负载连接在传感器输出端,记录传感器在带上负载时脉冲的高度UL,并通过IL=UL/RL计算出拉电流IL。随机选取2个样品,分别标志1#、2#,改变负载大小,记录数据如表1。驱动电路工作电压为+6V±0.5%VDC。
 
  表1: 推挽驱动电路输出能力实验

   负载
序号
空载
1
kW
800
W
600
W
500
W
400
W
300
W
200
W
100
W
50
W
20
W
1#
UL(V)
5.02
4.86
4.84
4.8
4.8
4.8
4.8
4.8
4.72
4.6
4.54
IL(mA)
0
4.86
6.05
8.0
9.6
12
16
24
4.72
92
227
2#
UL(V)
5.0
4.84
4.82
4.82
4.8
4.8
4.8
4.76
4.7
4.6
4.50
IL(mA)
0
4.84
6.03
8.03
9.6
12
16
23.8
4.7
92
225

 
 
 
 
 
 

    负载从1kΩ改变到20Ω时,输出拉电流在200mA以上,对应高电平电压仍然有4.55V左右,此时的脉冲高度是空载时的90%之上。这说明推挽驱动输出电流较大,而且输出的一致性较好。这是集电极开路输出电路达不到的。
3、温度稳定性测试
    温度稳定性的好坏直接关系到信号处理电路中电压比较器能否准确输出,下面重点考察比较器两个输入端的温度稳定性能,即分析温漂是否会使比较器产生误报的脉冲。V+表示电压比较器的参考电压,V-表示比较器的输入信号(即差动放大输出信号),V+与V-的差值表示门限差值。环境温度从-30℃变化到+70℃。把随机抽取的多个样品进行测量,记录V+和V-的数据。试验表明:在上述温度内,V-温度变化量不过0.15V,远低于比较器触发的门限差值,即不会引起比较器误触发,而且各个传感器的数据一致性较好。

    齿轮转速传感器的重复性是体现其特性的一项重要指标,因此随机挑选了5个锑化铟齿轮转速传感器进行重复性测试。其过程如下:由-30℃开始,随着温度的上升进行差动放大输出信号的变化测量,到了+70℃温度后,停止加热让其冷却,随着温度的下降再次进行差动放大输出测量。如此反复进行多次测量。比较结果为误差不超过1.5%,说明传感器有较好的耐疲劳度,具有较好的重复性,且无迟滞现象存在。

五、分析与讨论
    1、确定磁阻输出信号大小与检测间隙之间关系很重要,由此关系决定检测距离和信号处理电路的大倍数。从图4也可以看出,1#、2#、3#传感器输出信号随间隙的增加而陡降。由于三个样品测量数据一致性较好,对1#样品试验数据进行一元二次拟合,得到的这种磁头拟合曲线方程为:
     V(x)=2.0872x2-25.559x+74.8546       (2)

    2、当驱动级T3截止、T4导通时,传感器输出为低电平,如图5(a)。如果把负载等效为RL,则RL有电流流向驱动级中的T4,由于此时T4管深度饱和,输出电阻只有十几欧,因而带灌电流能力强。当驱动级T3导通、T4截止时,传感器输出为高电平,图5  (b)所示。此时,T3处于导通状态,集电极与发射极之间电阻很小,VCC经过这个很小的电阻向RL提供电流,因而输出电阻小,拉电流可以达到很大。因此,无论是高电平输出还是低电平输出,驱动电路总是对外电路呈现低电阻的特性,改善了其带负载的能力。

    3、采用磁阻三端差分型的信号采集电路和阻容耦合型信号处理电路,从电路上大大地抑制温漂的产生。阻容耦合起到关键的作用,因为由锑化铟磁敏电阻器和电阻组成的桥式输入网络的两个输入端在固定的直流电压下其电压值是不变的。信号处理电路采用阻容耦合电路,可消除传感器输出的低频漂移,而且由于温度漂移是缓慢的,可利用电容的隔直作用,使运放的直流放大倍数趋于零,只放大交流信号,阻止漂移量传给负载,提高电路稳定性。从而使锑化铟齿轮转速传感器温度稳定性好、一致性高、输出脉冲准确可靠。

六、结论
    通过实验,得到了磁阻输出信号与检测距离关系为:V(x)=2.0872x2-25.559x+74.8546;采用推挽输出驱动电路,输出电流达到200mA以上,与集电极开路驱动电路相比,提高了传感器的负荷力;传感器的温度稳定特性好,温度变化时,比较器不会产生误报输出。
    实验表明:这种齿轮转速传感器输出脉冲工整,抗干扰性强,电路具有实用性。
 


  
上一篇:单片机在报警主机中的应用(二)
下一篇:高灵敏度微球激光传感器

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料