1 引言
Viterbi译码算法是一种似然译码算法,目前广泛应用于各种数据传输系统,特别是卫星通信和移动通信系统中。近年来随着FPGA技术的迅速发展,使得基于FPGA实现Viterbi译码的算法成为研究的热点。 由于Viterbi译码器的复杂性随约束长度k成指数增加,大约束度不但使Viterbi译码器硬件复杂度大为增加,同时也限制了译码速度。而其中以加比选(Add Compareselect,ACS)运算为主要的瓶颈,的递归运算使流水线结构的应用变得困难。本文以(2,1,9)卷积码为例,用FPGA实现大约束度Viterbi译码器,其中ACS设计采用串并结合的方法来兼顾面积和速度,并用流水线结构来提高译码速度,对路径度量存储则采用同址存储方法,实现了在占用少量硬件资源的前提下,提高译码速度。 2 算法简述及系统结构分析 Viterbi译码原理详见文献[1,2],下面仅作简要说明。 分支度量单元(BMU) 主要是计算分支度量值。所谓分支度量值就是码字与接收码之间的距离。 加-比较-选择单元(ACSU) 主要是做路径度量值与分支度量值的叠加,并决定幸存路径度量值及决定位元(decision bit)。 路径度量存储单元(PMMU) 主要用来存储幸存路径度量值。 幸存路径存储单元(SMU) 主要用来存储决定位元。 接收序列先通过分支度量单元计算出各状态所有分支度量,然后经过ACS单元,将上一时刻的路径度量值与当前时刻的分支度量值作加-比较-选择等运算,计算出当前时刻的幸存路径和路径度量值,并找出决定位元(decision bit),把新的路径度量值存储到路径度量存储单元(PMMU),并把相应的幸存路径的决定位元(de-cision bit)存储到幸存路径存储单元(SMU),当译码到译码深度后,判决输出单元输出译码序列。由此可见: (1) 每计算一接收序列,所有状态的路径度量都要更新。若这些路径度量存储于一块RAM中,则RAM读写的次数为待译卷积码的状态数,当卷积码的约束度比较大时,对RAM的读写周期要求将会很高,很可能成为限制译码速度的瓶颈; (2) 在ACS单元,要完成路径度量的累加,比较并选择有度量的路径,是算法实现的关键电路,也是硬件资源耗费的部分。所以ACS单元的数目太多会大大增加译码器的硬件规模,太少则影响译码速度。因此,合理安排ACS单元与路径度量RAM是提高译码速度,减少硬件消耗的关键所在。 针对问题(1),本文从改进Viterbi译码算法和路径度量RAM分块两方面同时人手。首先,表示Viterbi算法过程的网格图可以进行分解与折叠。图3所示为(2,1,9)卷积码的部分网格图的分解与折叠。可以看出折叠后,ACS计算时由读写状态路径度量,得出一步后的更新结果,变为读写四状态路径度量,得出两步后的更新结果。省去了中间路径度量的读写,减少了RAM的读写次数。 当然,这种分解与折叠很容易扩展为基8或基16的网格图,RAM的读写次数将进一步减少,但此时ACS要同时处理8个或16个路径度量,复杂性几乎成指数增加,其计算速度也可能成为新的瓶颈。综合考虑,本文采用4个基4算法,每次同时处理16个状态。在基于4个基4算法的16个状态路径度量读写中,本文将路径度量RAM分为16块,每块存储16个状态的路径度量。16块RAM并行工作时,对每块RAM的读写周期要求降为原来的1/16。 针对问题(2),综合考虑资源占用与译码速度,并兼顾基4算法的实现,决定采用4个基4蝶形单元并行工作,每个蝶形单元(ACS)串行处理16个状态的串并结合方式。 在Viterbi译码器的实现过程中,计算当前时刻的路径度量需用到前一时刻的路径度量,所以必须对路径度量加倍缓存。本文提出了一种同址的路径度量存储方法,可以减少存储单元数量,而不影响译码速度。下面将详述该方法的原理及实现过程。 3 路径度量同址存储的原理与实现 Viterbi译码器的复杂性及所需存储器容量随着约束长度K成指数增加,Viterbi译码器每解码一位信息位就需对2K-1=28=256个寄存器进行路径度量,并对相应的存储单元进行读写,这样度量路径的存储管理就成了提高译码速度的一个重要环节。 通常,计算出来的度量路径可以存储在RAM中或者是寄存器中。对于约束度很大的Viterbi译码器而言,在VLSI应用中使用RAM来存储比使用寄存器更节省芯片面积,所以本文采用RAM存储的方式。状态度量的更新有两种模式,一种是ping-pong模式,即乒乓模式,一种是同址存储模式。乒乓模式是使用两块存储器,一块存储前一时刻的路径度量,另一块则存储更新后的路径度量。当前时刻ACS从一块存储器中读取前一时刻的路径度量,然后进行加比选运算,更新完的路径度量存入另一块存储器中。这种模式的缺点是需要两块路径度量存储器,优点是控制电路比较简单。另一种同址存储模式只需要一块路径度量存储器来进行度量的更新,每的更新度量都覆盖前一时刻的路径度量。因此这种模式所需的存储器容量只是乒乓模式的一半。 在维特比算法中,译码状态的转移导致路径度量的读出和写人状态不同,这样在用FPGA实现时,可以用双口RAM来实现。同时,为配合4个基4蝶形单元同时读出和写入16个路径度量的需要,应将各个路径状态分组,因此,我们采用16块双口Block RAM。 根据上面分析结果,16块RAM的RAM1~RAM16分别存储状态的路径度量,这里以状态来代替其相应的路径度量。 (1) 从n时刻到n+1时刻路径度量更新过程如下: 首先,读表1中RAM1,5,9,13,RAM2,6,10,14,RAM3,7,11,15,RAM4,8,12,16的数据,对应第1~第4个基4;例如从RAM1,5,9,13中读取第0位的状态0,64,128,192,经过第1个基4单元运算后,得到状态0,1,2,3,存入原来的状态0,64,128,192的位置(如表2所示)。这样从第1~16位依次读取数据,经过相应的基4蝶形单元运算,写入RAM1~RAM16中相应的位置,这样,从n时刻到n+1时刻的所有状态的路径度量都得到了更新,但存储于各RAM中的状态位置发生了变化。 (2) 从n+l时刻到n+2时刻的路径度量的更新 此时,读表2中RAM1,2,3,4,RAM5,6,7,8,RAM9,10,11,12,RAM13,14,15,16的数据,对应第1~第4个基4。例如读RAM1~4的第0,4,8,2位的状态0,64,128,192,经过个基4单元运算后,得到数据0,1,2,3,存入原来的状态0,64,128,192的位置。 (3) 从n+2时刻到n+3时刻的路径度量的更新 此时,读表3中RAM1,2,3,4,RAM5,6,7,8,RAM9,10,11,12,RAM13,14,15,16的数据,对应第1~第4个基4。例如读RAM1~4的第0,1,2,3位的状态0,64,128,192,经过个基4单元运算后,得到状态0,1,2,3,存入原来的状态0,64,128,192的位置(如表4所示)。读写的过程与写回RAM时的原理同上(同址存储),不同之处是读写RAM时的地址顺序,其读写地址如表6所示。更新后的n+3时刻的路径度量存储于各RAM的示意图如表3所示。 本文在FPGA实现时,路径度量RAM采用了FPGA内的双口Block RAM,故可在同一时间内对存储器执行读和写操作,因此可有效地降低读写次数和提高译码速度。RAM读写地址的产生:RAM1~RAM16的读地址用查找表产生。而RAM1~RAM16的写地址分别为读地址延时1个时钟周期得到,用FPGA实现非常简单。 4 仿真与实现 根据本文提出的结构,用Verilog语言完成上述结构设计,用ModelSim 6.0a对其进行波形仿真,地址产生的波形如图4所示。
5 结 语 本文重点从FPGA实现的角度对Viterbi译码器的路径度量进行了讨论,从译码速度和硬件资源消耗两方面考虑,探讨了Viterbi译码器的优化,提出了一种串并行结构和同址路径度量存储的方法,显著提高了译码器速度和减小了电路规模,并以(2,1,9)卷积码为例给出了实现过程。该译码器通过了ModelSim 6.0a的功能仿真,并已在ISE 7.1i环境中,用Xilinx的spartan3实现。对实现的结果进行了复杂度分析,发现资源的利用相当合理,其不足之处就是连线较多。 | |
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。