关于解决热敏电阻的非线性问题

时间:2007-10-25
如果您打算在整个温度范围内均使用热敏电阻温度传感器件,那么该器件的设计工作会颇具挑战性。热敏电阻通常为一款高阻抗、电阻性器件,因此当您需要将热敏电阻的阻值转换为电压值时,该器件可以简化其中的一个接口问题。然而更具挑战性的接口问题是,如何利用线性 ADC 以数字形式捕获热敏电阻的非线性行为。

   “热敏电阻”一词源于对“热度敏感的电阻”这一描述的概括。热敏电阻包括两种基本的类型,分别为正温度系数热敏电阻和负温度系数热敏电阻。负温度系数热敏电阻非常适用于高温度测量。要确定热敏电阻周围的温度,您可以借助 Steinhart-Hart 公式:T=1/(A0+A1(lnRT)+A3(lnRT3)) 来实现。其中,T 为开氏温度;RT 为热敏电阻在温度 T 时的阻值;而  A0、A1 和 A3 则是由热敏电阻生产厂商提供的常数。

  热敏电阻的阻值会随着温度的改变而改变,而这种改变是非线性的,Steinhart-Hart 公式表明了这一点。在进行温度测量时,需要驱动一个通过热敏电阻的参考电流,以创建一个等效电压,该等效电压具有非线性的响应。您可以使用配备在微控制器上的参照表,尝试对热敏电阻的非线性响应进行补偿。即使您可以在微控制器固件上运行此类算法,但您还是需要一个高转换器用于在出现极端值温度时进行数据捕获。

  另一种方法是,您可以在数字化之前使用“硬件线性化”技术和一个较低的 ADC。其中一种技术是将一个电阻 RSER 与热敏电阻 RTHERM 以及参考电压或电源进行串联(见图 1)。将 PGA(可编程增益放大器)设置为 1V/V,但在这样的电路中,一个 10 位的 ADC 只能感应很有限的温度范围(大约 ±25°C)。

  请注意,在图 1 中对高温区没能解析。但如果在这些温度值下增加 PGA 的增益,就可以将 PGA 的输出信号控制在一定范围内,在此范围内 ADC 能够提供可靠地转换,从而对热敏电阻的温度进行识别。

  微控制器固件的温度传感算法可读取 10 位的 ADC 数字值,并将其传送到 PGA 滞后软件程序。PGA 滞后程序会校验 PGA 增益设置,并将 ADC 数字值与图 1 显示的电压节点的值进行比较。如果 ADC 输出超过了电压节点的值,则微控制器会将 PGA 增益设置到下一个较高或较低的增益设定值上。如果有必要,微控制器会再次获取一个新的 ADC 值。然后 PGA 增益和 ADC 值会被传送到一个微控制器分段线性内插程序。

  从非线性的热敏电阻上获取数据有时候会被看作是一项“不可能实现的任务”。您可以将一个串联电阻、一个微控制器、一个 10 位 ADC 以及一个 PGA 合理的配合使用,以解决非线性热敏电阻在超过 ±25°C 温度以后所带来的测量难题。

一个电阻 RSER 与热敏电阻 RTHERM 以及参考电压或电源进行串联


  
上一篇:低消耗的QAM映射与转换的电路
下一篇:基于简单的FIFO提供数据宽度转换

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料