温度传感器及热敏元件
温度传感器主要由热敏元件组成。热敏元件品种教多,市场上销售的有双金属片、铜热电阻、铂热电阻、热电偶及半导体热敏电阻等。以半导体热敏电阻为探测元件的温度传感器应用广泛,这是因为在元件允许工作条件范围内,半导体热敏电阻器具有体积小、灵敏度高、精度高的特点,而且制造工艺简单、价格低廉。
1 半导体热敏电阻的工作原理
按温度特性热敏电阻可分为两类,随温度上升电阻增加的为正温度系数热敏电阻,反之为负温度系数热敏电阻。
⑴ 正温度系数热敏电阻的工作原理
此种热敏电阻以钛酸钡(BaTio3)为基本材料,再掺入适量的稀土元素,利用陶瓷工艺高温烧结尔成。纯钛酸钡是一种*缘材料,但掺入适量的稀土元素如镧(La)和铌(Nb)等以后,变成了半导体材料,被称半导体化钛酸钡。它是一种多晶体材料,晶粒之间存在着晶粒界面,对于导电电子而言,晶粒间界面相当于一个位垒。当温度低时,由于半导体化钛酸钡内电场的作用,导电电子可以很容易越过位垒,所以电阻值较小;当温度升高到居里点温度(即临界温度,此元件的‘温度控制点’ 一般钛酸钡的居里点为120℃)时,内电场受到破坏,不能帮助导电电子越过位垒,所以表现为电阻值的急剧增加。因为这种元件具有未达居里点前电阻随温度变化*缓慢,具有恒温、调温和自动控温的功能,只发热,不发红,无明火,不易燃烧,电压交、直流3~440V均可,使用寿命长,*适用于电动机等电器装置的过热探测。
到2015年,MEMS压力传感器销售额将*19.7亿美元,如图所示,2010-2015年的复合年度*率为10%。
MEMS压力传感器在多种应用领域得到大量使用
MEMS压力传感器是一种薄膜元件,受到压力时变形。可以利用应变仪(压阻型感测)来测量这种形变,也可以通过电容感测两个面之间距离的变化来加以测量。这两种方法都很流行,轮胎压力监测系统使用比较结实的压阻方法。
汽车产业仍然是MEMS压力传感器的*大应用领域,占其销售额的72%,其次是*电子占12%,工业领域占10%,消费电子与*航空占据其余的6%市场。
在汽车领域,引擎管理是其主要应用,包括汽油发动机中的歧管空气压力传感器和柴油车中的共轨压力传感器,尤其是在欧洲。为了*燃烧情况,有些组织也在研究可以在汽缸内工作的压力传感器,以更好地测量参与化学反应的各种物质的准确比例,并把数据反馈给引擎管理系统。
非接触式温度传感器的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化*(瞬变)对象的表面温度,也可用于测量温度场的温度分布。*常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收*辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则*须进行材料表面发射率的修正。而材料表面发射率不*取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难*测量。在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能*被测表面的*辐射和*发射系数。利用*发射系数通过仪表对实测温度进行相应的修正,*终可得到被测表面的真实温度。*为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而**发射系数:式中ε为材料表面发射率,ρ为反射镜的反射率。至于气体和液体介质真实温度的辐射测量,则可以用*耐热材料管至*深度以形成黑体空腔的方法。通过计算求出与介质*热平衡后的圆筒空腔的*发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。
非接触测温优点:测量上限不受感温元件耐温程度的限制,因而对*高可测温度原则上没有限制。对于1800℃以上的高温,主要采用非接触测温方法。随着红外技术的发展,辐射测温逐渐由可见光向*扩展,700℃以下直至常温都已采用,且分辨率很高。
更多产品请看本公司产品*销售网站: