磁传感器也称电流传感器,就是把磁场、电流、应力应变、温度、光等引起敏感元件磁性能的变化转换成电信号,以这种方式来检测相应物理量的器件。磁传感器未来的发展趋势有以下几种特点:
1、高灵敏度。被检测信号的强度越来越弱,这就需要磁性传感器灵敏度得到*大*。应用方面包括电流传感器、角度传感器、齿轮传感器、太空环境测量。
2、温度稳定性。更多的应用领域要求传感器的工作环境越来越严酷,这就要求磁传感器*须具有很好的温度稳定性,行业应用包括汽车电子行业。
3、*干扰性。很多领域里传感器的使用环境没有任何评比,就要求传感器本身具有很好的*干扰性。包括汽车电子、水表等等。
多传感器数据融合技术形成于上世纪80年代,目前已成为研究的热点。它不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更*的综合决策过程。
多传感器数据融合的定义可以概括为把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而*系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层融合、特征层融合、决策层融合。
由于多传感器数据融合比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。应用领域除军事外,已适用于自动化技术、机器人、海洋*、地震观测、建筑、空中交通管制、*诊断、遥感技术等方面。
实际中,在现代化生产装置中都是发挥它们各自的特点进行混合选用的。
3. 压力变送器的选型
从物理学角度来看,任何一个物体上受到的压力都包括大气压力和被测介质的压力(一般称为表压)两部分。作用在被测物体上的这两部分压力总和称为*对压力。
P*=P表 + 大气压
测量*对压力的仪表称为*压表。对于普通的工业压力表测量的都是表压值,也就是*对压力与大气压的压差值。当*对压力大于大气压值时测得的表压值为正值,称为正表压;当*对压力小于大气压值时测得的表压值为负值,称为负表压,即真空度。测量真空度的仪表称为真空表。
⑴ 为了*压力测量精度,*小压力测量值应高于压力表测量量程的1/3;
⑵ 对需远距离测量或测量精度要求较高的场合,应选用压力传感器或压力变送器;
⑶ 在测量精度要求不高时选型原则
在压力/差压变送器的选用上主要依据:以被测介质的性质指标为准,以节约资金、便于安装和维护为参考。如果被测介质为高黏度、易结晶、强腐蚀的,*须选用隔离型变送器。
在选型时要考虑被测流体介质对膜盒金属的腐蚀,*要选好膜盒材质,否则使用后很短时间就会将外膜片腐蚀坏,发兰也会被腐蚀坏造成设备或人身事故,所以膜盒材质的选择*关键。变送器的膜盒材质有普通不锈钢、304不锈钢、316/316L不锈钢、钽材质等。
在选型时要考虑到被测介质的温度,如果温度高,*200℃~400℃,要选用高温型,否则硅油会产生汽化膨胀,使测量不准确。
在选型时要考虑设备的工作压力等级,变送器的压力等级*须与应用场合相*合。从经济角度上讲,外膜盒及*部分材质比较重要,要选合适,但连接发兰可以降低材质要求,如选用碳钢、镀铬等,这样会节约很多资金。
隔离型压力变送器*好选用螺纹连接形式,这样既节约资金,安装也方便。
对于普通型压力和差压变送器选型,也要考虑到被测介质的腐蚀性问题,但使用的介质温度可以不予考虑,因为普通型是引压到表内,长期工作时温度是常温,但普通型使用的维护量要比隔离型大。*先是保温问题,气温*下时导压管会结冰,变送器无法工作甚至损坏,这就要增加伴热和保温箱等装置。
从经济角度上来讲,选用变送器时,只要不是易结晶介质都可以采用普通型变送器,而且对于低压易结晶介质也可以加吹扫介质来间接测量(只要工艺允许用吹扫液或气),应用普通型变送器就是要求维护人员多进行定时检查,包括各种导压管是否泄漏、吹扫介质是否正常、保温是否良好等,只要维护好,大量使用普通型变送器一次性投资会节约很多。维护时要注意硬件维护和软维护相结合。
从选用变送器测量范围上来说,一般变送器都具有*的量程可调范围,*好将使用的量程范围设定在它量程的1/4~3/4段,这样精度会有所*,对于微差压变送器来说更是重要。实践中有些应用场合(液位测量)需要对变送器的测量范围迁移,根据现场安装位置计算出测量范围和迁移量进行迁移,迁移有正迁移和负迁移之分。*的环境温度、相对湿度的测量方法。
2.1温度测量及其精度调整方法
AD590是一种由所在环境温度决定的恒流输出器件,其输出特性为:
I=Kt·t (1)
式中I为AD590输出电流信号,单位为1uA电流。t为*对温度,单位为K。Kt为转换系数,单位为1uA/K。这种传感器线性好,热容量小,灵敏度度高,*干扰能力强,测温范围为-55℃~+150℃。