图文详情
产品属性
相关推荐
光耦特性与应用
1.概述
光耦合器亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类*多、用途*广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二*管(LED),使之发出*波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电*缘能力和*干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大*信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的*性。
光耦的主要优点是:信号单向传输,输入端与输出端*实现了电气隔离隔离,输出信号对输入端无影响,*干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气*缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离
、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,*精密稳压目的。
十几年来,新型光耦合器不断涌现,满足了各种光控制的要求。其应用范围已扩展到计测仪器,精密仪器,工业用电子仪器,计算机及其外部设备、通信机、信号机和道路情报系统,电力机械等领域。这里侧重介绍该器件的工作特性,驱动和输出电路及部分实际应用电路。
近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。下面分别介绍光耦合器的工作原理及检测方法。
2. 光耦的性能及类型
用于传递模拟信号的光耦合器的发光器件为二*管、光接收器为光敏三*管。当有电流通过发光二*管时,便形成一个光源,该光源照射到光敏三*管表面上,使光敏三*管产生集电*电流,该电流的大小与光照的强弱,亦即流过二*管的正向电流的大小成正比。由于光耦合器的输入端和输出端之间通过光信号来传输,因而两部分之间在电气上*隔离,没有电信号的反馈和干扰,故性能稳定,*干扰能力强。发光管和光敏管之间的耦合电容小(2pf左右)、耐压高(2.5KV左右),故共模抑制比很高。输入和输出间的电隔离度取决于两部分供电电源间的*缘电阻。此外,因其输入电阻小(约10Ω),对高内阻源的噪声相当于被短接。因此,由光耦合器构成的模拟信号隔离电路具有优良的电气性能。
事实上,光耦合器是一种由光电流控制的电流转移器件,其输出特性与普通双*型晶体管的输出特性相似,因而可以将其作为普通放大器直接构成模拟放大电路,并且输入与输出间可实现电隔离。然而,这类放大电路的工作稳定性较差,无实用价值。究其原因主要有两点:一是光耦合器的线性工作范围较窄,且随温度变化而变化;二是光耦合器共发射*电流传输系数β和集电*反向饱和电流ICBO(即暗电流)受温度变化的影响明显。因此,在实际应用中,除应选用线性范围宽、线性度高的光耦合器来实现模拟信号隔离外,还*须在电路上采取*措施,尽量消除温度变化对放大电路工作状态的影响。
从光耦合器的转移特性与温度的关系可以看出,若使光耦合器构成的模拟隔离电路稳定实用,则应尽量消除暗电流(ICBO)的影响,以*线性度,做到静态工作点IFQ随温度的变化而自动调整,以使输出信号保持对称性,使输入信号的动态范围随温度变化而自动变化,以抵消β值随温度变化的影响,*电路工作状态的稳定性。
2.1光耦合器的类型
光耦合器有管式、双列直插式和光导纤维式等封培育形式,其种类达数十种。光耦合器的种类达数十种,主要有通用型(又分无基*引线和基*引线两种)、达林顿型、施密特型、*型、光集成电路、光纤维、光敏晶闸管型(又分单向晶闸管、双向晶闸管)、光敏场效应管型。此外还有双通道式(内部有两套对管)、高增益型、交-直流输入型等等。国外生产厂家有英国ISOCOM公司等,国内厂家的苏州半导体总厂等。
2.2线性光耦合器的产品分类
线性光耦合器的典型产品及主要参数见表1,这些光耦均以光敏三*管作为接收管
表1典型线性光耦合器的主要参数
产品型号 *R/% V(BR)CE0/V 生产厂 封装型式
PC816A 80~160 70 Sharp DZP-4基*未引出
PC817A 80~160 35 Sharp
SFH610A-2 63~125 70 simens
NEC2501-H 80~160 40 NEC
CNY17-2 63~125 70 Motoroln DZP-4基*未引出
CNY17-3 100~200 70 simens
SFH600-1 63~125 70 simens
SFH600-2 100~200 70 simens
CNY75GA 63~125 90 Temic DZP-4基*未引出
CNY75GB 100~200 90 Temic
MOC8101 50~80 30 Motoroln
MOC8102 73~117 30 Motoroln
3.光耦合器的技术参数
光耦合器的技术参数主要有发光二*管正向压降VF、正向电流IF、电流传输比*R、输入级与输出级之间的*缘电阻、集电*-发射*反向击穿电压V(BR)CEO、集电*-发射*饱和压降VCE(sat)。此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间和存储时间等参数。
*重要的参数是电流放大系数传输比*R(Curremt-Trrasfer Ratio)。通常用直流电流传输比来表示。当输出电压保持恒定时,它等于直流输出电流IC与直流输入电流IF的百分比。当接收管的电流放大系数hFE为常数时,它等于输出电流IC之比,通常用百分数来表示。有公式:
*R=IC/ IF×100%
采用一只光敏三*管的光耦合器,*R的范围大多为20%~30%(如4N35),而PC817则为80%~160%,达林顿型光耦合器(如4N30)可达100%~500%。这表明欲获得同样的输出电流,后者*较小的输入电流。因此,*R参数与晶体管的hFE有某种相似之处。普通光耦合器的*R-IF特性曲线呈非线性,在IF较小时的非线性失真尤为严重,因此它不适合传输模拟信号。线性光耦合器的*R-IF特性曲线具有良好的线性度,*是在传输小信号时,其交流电流传输比(Δ*R=ΔIC/ΔIF)很接近于直流电流传输比*R值。因此,它适合传输模拟电压或电流信号,能使输出与输入之间呈线性关系。这是其重要特性。在设计光耦反馈式开关电源时*须正确选择线性光耦合器的型号及参数,选取原则如下:
(1)光耦合器的电流传输比(*R)的允许范围是50%~200%。这是因为当*R<50%时,光耦中的LED就需要较大的工作电流(IF>5.0mA),才能正常控制单片开关电源IC的占空比,这会*光耦的功耗。若*R>200%,在启动电路或者当负载发生突变时,有可能将单片开关电源误触发,影响正常输出。
(2)推荐采用线性光耦合器,其特点是*R值能够在*范围内做线性调整。
(3)由英国埃索柯姆(Isocom)公司、美国摩托罗拉公司生产的4N××系列(如4N25 、4N26、4N35)光耦合器,目前在国内应用地十分普遍。鉴于此类光耦合器呈现开关特性,其线性度差,适宜传输数字信号(高、低电平),因此不推荐用在开关电源中。
4.通用型与达林顿型光耦合器区分
4.1方法之一
在通用型光耦合器中,接收器是一只硅光电半导体管,因此在B-E之间只有一个硅PN结。达林顿型不然,它由复合管构成,两个硅PN结串联成复合管的发射结。根据上述差别,很容易将通用型与达林顿型光耦合器区分开来。具体方法是,将万用表拨至R×100档,黑表笔接B*,红表笔接E*,采用读取电压法求出发射结正向电压VBE。若VBE=0.55~0.7V,就是达林顿型光藕。
实例:用500型万用表的R×100档分别测量4N35、4N30型光耦合器的VBE,测量数据及结论一并列入表2中。
表2测试结果
型号 RBE(Ω) n`(格) VBE(V) 计算公式 测试结论
4N.69 VBE=0.03n(V) 通用型
4N30 4.3k 40.5 1.215 VBE=0.03n`(V) 达林顿型
4.2方法之二
通用型与达林顿型光电耦合的主要区别是接收管的电流放大系数不同。前者的hFE为几十倍至几*,后者可达数*,二者相差1~2个数量级。因此,只要准确测量出hFE值,即可加以区分。在测量时应注意事项:
(1)因为达林顿型光耦合器的hFE值很高,所以表针两次偏转格数*接近。准确读出n1、 n2的格数是本方法关键所在,否则将引起较大的误差。此外,欧姆*点亦应事先调准。
(2)若4N30中的发射管损坏,但接收管未发现故障,则可代替*β管使用。同理,倘若4N35中的接收管完好*,也可作普通硅NPN晶体管使用,实现废物利用。
(3)对于无基*引线的通用型及达林顿型光耦合器,本方法*适用。建议采用测电流传输比*R的方法加以区分。
否
Sharp/夏普
PC817A/B/C
光电耦合器
X射线
电激励式
半导体
内光路
光开关型
三态门电路型
低速
双通道
0(nm)
0(mm)