变频电机编码器

地区:天津 天津市
认证:

天津市大明欧瑞电气传动设备有限公司

普通会员

全部产品 进入商铺
品牌:大明 产品类型:三相异步电动机 型号:YVPB *数:4* 额定功率:110KW 额定电压:380(V) 额定转速:1450(rpm) 产品认证:ISO9001-2000 应用范围:机械设备

各种电机编码器,与电机配套使用

电机小知识:
   定义:是指依据电磁感应定律实现电能的转换或传递的一种电磁装置。电动机也称(俗称马达),在电路中用字母“M”(旧标准用“D”)表示。它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源。
  发电机在电路中用字母“G”表示。它的主要作用是利用机械能转化为电能,目前*常用的是,利用热能、水能等推动发电机转子来发电,随着风力发电技*的日趋成熟,风电也慢慢走进我们的生活。
  变压器,在有的书上称之为静止的电机。从电机的定义发现,这么说也有它的道理的。

电动机的种类
  1.按工作电源种类划分:可分为直流电机和交流电机。
  1.1直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。
  1.1.1有刷直流电动机可划分:永磁直流电动机和电磁直流电动机。
  1.1.1.1电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。
  1.1.1.2永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。
  1.1其中交流电机还可分:单相电机和三相电机。
  2.按结构和工作原理划分:可分为直流电动机、异步电动机、同步电动机。
  2.1同步电机可划分:永磁同步电动机、磁阻同步电动机和磁滞同步电动机。
  2.2异步电机可划分:感应电动机和交流换向器电动机。
  2.2.1感应电动机可划分:三相异步电动机、单相异步电动机和罩*异步电动机等。
  2.2.2交流换向器电动机可划分:单相串励电动机、交直流两用电动机和推斥电动机。
  3.按起动与运行方式划分:电容起动式单相异步电动机、电容运转式单相异步电动机、电容起动运转式单相异步电动机和分相式单相异步电动机。
  4.按用途划分:驱动用电动机和控制用电动机。
  4.1驱动用电动机划分:电动工具(包括钻孔、抛光、磨光、开槽、切割、扩孔等工具)用电动机、家电(包括洗衣机、电风扇、电冰箱、空调器、录音机、录像机、影碟机、吸尘器、照相机、电吹风、电动剃须刀等)用电动机及其它通用小型机械设备(包括各种小型机床、小型机械、*器械、电子仪器等)用电动机。
  4.2控制用电动机又划分:步进电动机和伺服电动机等。
  5.按转子的结构划分:笼型感应电动机(旧标准称为鼠笼型异步电动机)和绕线转子感应电动机(旧标准称为绕线型异步电动机)。
  6.按运转速度划分:*电动机、低速电动机、恒速电动机、调速电动机。低速电动机又分为齿轮减速电动机、电磁减速电动机、力矩电动机和爪*同步电动机等。
  调速电动机除可分为有级恒速电动机、无级恒速电动机、有级变速电动机和无级变速电动机外,还可分为电磁调速电动机、直流调速电动机、PWM变频调速电动机和开关磁阻调速电动机。
  异步电动机的转子转速总是略低于旋转磁场的同步转速。
  同步电动机的转子转速与负载大小无关而*保持为同步转速。

一.直流电动机
  直流电动机是依靠直流工作电压运行的电动机,广泛应用于收录机、录像机、影碟机、电动剃须刀、电吹风、电子表、玩具等。
  1.电磁式直流电动机 电磁式直流电动机由定子磁*、转子(电枢)、换向器(俗称整流子)、电刷、机壳、轴承等构成,
  电磁式直流电动机的定子磁*(主磁*)由铁心和励磁绕组构成。根据其励磁(旧标准称为激磁)方式的不同又可分为串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。因励磁方式不同,定子磁*磁通(由定子磁*的励磁线圈通电后产生)的规律也不同。
  串励直流电动机的励磁绕组与转子绕组之间通过电刷和换向器相串联,励磁电流与电枢电流成正比,定子的磁通量随着励磁电流的*而*,转矩近似与电枢电流的平方成正比,转速随转矩或电流的增加而*下降。其起动转矩可达额定转矩的5*,短时间过载转矩可达额定转矩的4*,转速变化率较大,空载转速甚高(一般不允许其在空载下运行)。可通过用外用电阻器与串励绕组串联(或并联)、或将串励绕组并联换接来实现调速。
  并励直流电动机的励磁绕组与转子绕组相并联,其励磁电流较恒定,起动转矩与电枢电流成正比,起动电流约为额定电流的2.5倍左右。转速则随电流及转矩的*而略有下降,短时过载转矩为额定转矩的1.5倍。转速变化率较小,为5%~15%。可通过消弱磁场的恒功率来调速。
  他励直流电动机的励磁绕组接到*的励磁电源供电,其励磁电流也较恒定,起动转矩与电枢电流成正比。转速变化也为5%~15%。可以通过消弱磁场恒功率来*转速或通过降低转子绕组的电压来使转速降低。
  复励直流电动机的定子磁*上除有并励绕组外,还装有与转子绕组串联的串励绕组(其匝数较少)。串联绕组产生磁通的方向与主绕组的磁通方向相同,起动转矩约为额定转矩的4倍左右,短时间过载转矩为额定转矩的3.5倍左右。转速变化率为25%~30%(与串联绕组有关)。转速可通过消弱磁场强度来调整。
  换向器的换向片使用银铜、镉铜等合金材料,用*度塑料模压成。 电刷与换向器滑动接触,为转子绕组提供电枢电流。电磁式直流电动机的电刷一般采用金属石墨电刷或电化石墨电刷。 转子的铁心采用硅钢片叠压而成,一般为12槽,内嵌12组电枢绕组,各绕组间串联接后,再分别与12片换向片连接。

1.永磁式直流电动机
  永磁式直流电动机也由定子磁*、转子、电刷、外壳等组成,定子磁*采用永磁体(永久磁钢),有铁氧体、铝镍钴、钕铁硼等材料。按其结构形式可分为圆筒型和瓦块型等几种。录放机中使用的电多数为圆筒型磁体,而电动工具及汽车用电器中使用的电动机多数采用专块型磁体。
  转子一般采用硅钢片叠压而成,较电磁式直流电动机转子的槽数少。录放机中使用的小功率电动机多数为3槽,较*的为5槽或7槽。漆包线绕在转子铁心的两槽之间(三槽即有三个绕组),其各接头分别焊在换向器的金属片上。电刷是连接电源与转子绕组的导电部件,具备导电与*两种性能。永磁电动机的电刷使用单性金属片或金属石墨电刷、电化石墨电刷。
  录放机中使用的永磁式直流电动机,采用电子稳速电路或离心式稳速装置。

2.无刷直流电动机
  无刷直流电动机是采用半导体开关器件来实现电子换向的,即用电子开关器件代替传统的接触式换向器和电刷。它具有*性高、无换向火花、机械噪声低等优点,广泛应用于*录音座、录像机、电子仪器及自动化办公设备中。
  无刷直流电动机由永磁体转子、多*绕组定子、位置传感器等组成。位置传感按转子位置的变化,沿着*次序对定子绕组的电流进行换流(即检测转子磁*相对定子绕组的位置,并在确定的位置处产生位置传感信号,经信号转换电路处理后去控制功率开关电路,按*的逻辑关系进行绕组电流切换)。定子绕组的工作电压由位置传感器输出控制的电子开关电路提供。
  位置传感器有磁敏式、光电式和电磁式三种类型。
  采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(例如霍尔元件、磁敏二*管、磁敏诂*管、磁敏电阻器或*集成电路等)装在定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。
  采用光电式位置传感器的无刷直流电动机,在定子组件上按*位置配置了光电传感器件,转子上装有遮光板,光源为发光二*管或小灯泡。转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按*频率间歇间生脉冲信号。
  采用电磁式位置传感器的无刷直流电动机,是在定子组件上安装有电磁传感器部件(例如耦合变压器、接近开关、LC谐振电路等),当永磁体转子位置发生变化时,电磁效应将使电磁传感器产生高频调制信号(其幅值随转子位置而变化)。

二.交流异步电动机
  交流异步电动机是*交流电压运行的电动机,广泛应用于电风扇、电冰箱、洗衣机、空调器、电吹风、吸尘器、油烟机、洗碗机、电动缝纫机、食品加工机等家用电器及各种电动工具、小型机电设备中。
  交流电异步电动机分为感应电动机和交流换向器电动机。感应电动机又分为单相异步电动机、交直流两用电动机和推斥电动机。
  电机的转速(转子转速)小于旋转磁场的转速,从而叫为异步电机。它和感应电机基本上是相同的。s=(ns-n)/ns。s为转差率,
  ns为磁场转速,n为转子转速。
  基本原理:(1)当三相异步电机接入三相交流电源时,三相定子绕组流过三相对称电流产生的三相磁动势(定子旋转磁动势)并产生旋转磁场。
  (2)该旋转磁场与转子导体有相对切割运动,根据电磁感应原理,转子导体产生感应电动势并产生感应电流。
  (3)根据电磁力定律,载流的转子导体在磁场中受到电磁力作用,形成电磁转矩,驱动转子旋转,当电动机轴上带机械负载时,便向外输出机械能。
  异步电机是一种交流电机,其负载时的转速与所接电网的频率之比不是恒定关系。还随着负载的大小发生变化。负载转矩越大,转子的转速越低。异步电机包括感应电机、双馈异步电机和交流换向器电机。感应电机应用*广,在不致引起误解或混淆的情况下,一般可称感应电机为异步电机。
  普通异步电机的定子绕组接交流电网,转子绕组不需与其他电源连接。因此,它具有结构简单,制造、使用和维护方便,运行*以及质量较小,成本较低等优点。异步电机有较高的运行效率和较好的工作特性,从空载到满载范围内接近恒速运行,能满足大多数工农业生产机械的传动要求。异步电机还便于派生成各种*护型式,以适应不同环境条件的需要。异步电机运行时,*须从电网吸取无功励磁功率,使电网的功率因数变坏。因此,对驱动球磨机、压缩机等大功率、低转速的机械设备,常采用同步电机。由于异步电机的转速与其旋转磁场转速有*的转差关系,其调速性能较差(交流换向器电动机除外)。对要求较宽广和平滑调速范围的交通运输机械、轧机、大型机床、印染及造纸机械等,采用直流电机较经济、方便。但随着大功率电子器件及交流调速系统的发展,目前适用于宽调速的异步电机的调速性能及经济性已可与直流电机的*。

1.单相异步电动机
  单相异步电动机由定子、转子、轴承、机壳、端盖等构成。
  定子由机座和带绕组的铁心组成。铁心由硅钢片冲槽叠压而成,槽内嵌装两套空间互隔90°电角度的主绕组(也称运行绕组)和辅绕组(也称起动绕组成副绕组)。主绕组接交流电源,辅绕组串接离心开关S或起动电容、运行电容等之后,再接入电源。
  转子为笼型铸铝转子,它是将铁心叠压后用铝铸入铁心的槽中,并一起铸出端环,使转子导条短路成鼠笼型。
  单相异步电动机又分为单相电阻起动异步电动机,单相电容起动异步电动机、单相电容运转异步电动机和单相双值电容异步电动机。

2.三相异步电动机
  三相异步电动机的结构与单相异步电动机相似,其定子铁心槽中嵌装三相绕组(有单层链式、单层同心式和单层交叉式三种结构)。定子绕组成接入三相交流电源后,绕组电流产生的旋转磁场,在转子导体中产生感应电流,转子在感应电流和气隙旋转磁场的相互作用下,又产生电磁转柜(即异步转柜),使电动机旋转。

3.罩*式电动机
  罩*式电动机是单向交流电动机中*简单的一种,通常采用笼型斜槽铸铝转子。它根据定子外形结构的不同,又分为凸*式罩*电动机隐*式罩*电动机。
  凸*式罩*电动机的定子铁心外形为方形、矩形或圆形的磁场框架,磁*凸出,每个磁*上均有1个或多个起辅助作用的短路铜环,即罩*绕组。凸*磁*上的集中绕组作为主绕组。
  隐*式罩*电动机的定子铁心与普通单相电动机的铁心相同,其定子绕组采用分布绕组,主绕组分布于定子槽内,罩*绕组不用短路铜环,而是用较粗的漆包线绕成分布绕组(串联后自行短路)嵌装在定子槽中(约为总槽数的2/3),起辅助组的作用。主绕组与罩*绕组在空间相距*的角度。
  当罩*电动机的主绕组通电后,罩*绕组也会产生感应电流,使定子磁*被罩*绕组罩住部分的磁通与未罩部分向被罩部分的方向旋转。

4.单相串励电动机
  单相串励电动机的定子由凸*铁心和励磁绕组组成,转子由隐*铁心、电枢绕组、换向器及转轴等组成。励磁绕组与电枢绕组之间通过电刷和换向器形成串联回路。图18-16是单向串励电动机的结构。
  单相串励电动机属于交、直流两用电动机,它既可以使用交流电源工作,也可以使用直流电源工作。 三.交流同步电动机
  交流同步电动机是一种恒速驱动电动机,其转子转速与电源频率保持恒定的比例关系,被广泛应用于电子仪器仪表、现代办公设备、纺织机械等。

1.永磁同步电动机
  永磁同步电动机属于异步启动永磁同步电动机,其磁场系统由一个或多个永磁体组成,通常是在用铸铝或铜条焊接而成的笼型转子的内部,按所需的*数装镶有永磁体的磁*。定子结构与异步电动机类似。
  当定子绕组接通电源后,电动机以异步电动机原理起动动转,加速运转至同步转速时,由转子永磁磁场和定子磁场产生的同步电磁转矩(由转子永磁磁场产生的电磁转矩与定子磁场产生的磁阻转矩合成)将转子牵入同步,电动机进入同步运行。
  磁阻同步电动机 磁阻同步电动机也称反应式同步电动机,是利用转子交轴和直轴磁阻不等而产生磁阻转矩的同步电动机,其定子与异步电动机的定子结构类似,只是转子结构不同。

2.磁阻同步电动机
  同笼型异步电动机演变来的,为了使电动机能产生异步起动转矩,转子还设有笼型铸铝绕阻。转子上开设有与定子*数相对应的反应槽(*有凸*部分的作用,无励磁绕组和永久磁铁),用来产生磁阻同步转矩。根据转子上反应槽的结构的不同,可分为内反应式转子、外反应式转子和内外反应式转子,其中,外反应式转子反应槽开地转子外圆,使其直轴与交轴方向气隙不等。内反应式转子的内部开有沟槽,使交轴方向磁通受阻,磁阻*。内外反应式转子结合以上两种转子的结构特点,直轴与交轴差别较大,使电动机的力能较大。磁阻同步电动机也分为单相电容运转式、单相电容起动式、单相双值电容式等多种类型。

3.磁滞同步电动机
  磁滞同步电动机是利用磁滞材料产生磁滞转矩而工作的同步电动机。它分为内转子式磁滞同步电动机、外转子式磁滞同步电动机和单相罩*式磁滞同步电动机。
  内转子式磁滞同步电动机的转子结构为隐*式,外观为光滑的圆柱体,转子上无绕组,但铁心外圆上有用磁滞材料制成的环状*层。
  定子绕组接通电源后,产生的旋转磁场使磁滞转子产生异步转矩而起动旋转,随后自行牵入同步运转状态。在电动机异步运行时,定子旋转磁场以转差频率反复地磁化转子;在同步运行时,转子上的磁滞材料被磁化而出现了永磁磁*,从而产生同步转矩。
  软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。这种电路如三相全控桥式整流电路。使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。待电机*额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,*其工作效率,又使电网避免了谐波污染。软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到*,避免自由停车引起的转矩冲击。
  直流无刷电机的*性
  直流电机具有响应快速、较大的起动转矩、从*转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子。碳刷及整流子在电机转动时会产生火花、碳粉因此除了会造成组件损坏之外,使用场合也受到限制。交流电机没有碳刷及整流子,免维护、坚固、应用广,但特性上若要*相当于直流电机的性能须用复杂控制技*才能*。现今半导体发展*功率组件切换频率加快许多,*驱动电机的性能。微处理机速度亦越来越快,可实现将交流电机控制置于一旋转的两轴直交坐标系统中,适当控制交流电机在两轴电流分量,*类似直流电机控制并有与直流电机相当的性能。
  此外已有很多微处理机将控制电机*需的功能做在芯片中,而且体积越来越小;像模拟/数字转换器(*og-to-di*al converter,adc)、脉冲宽度调制(pulse wide modulator,pwm)…等。直流无刷电机即是以电子方式控制交流电机换相,得到类似直流电机特性又没有直流电机机构上缺失的一种应用。
  直流无刷电机的控制结构
  直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子*数(p)影响:
  n=120.f / p。在转子*数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期*接近直流电机特性的方式。也就是说直流无刷电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持*的转速。
  直流无刷驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。
  电源部可以直接以直流电输入(一般为24v)或以交流电输入(110v/220 v),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器 (inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(q1~q6) 分为上臂(q1、q3、q5)/下臂(q2、q4、q6)连接电机作为控制流经电机线圈的开关。控制部则提供pwm(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。
  直流无刷电机的控制原理
  要让电机转动起来,*先控制部就*须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)*率晶体管的顺序,如 下(图二) inverter中之ah、bh、ch(这些称为上臂功率晶体管)及al、bl、cl(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。
  基本上功率晶体管的开法可举例如下:
  ah、bl一组→ah、cl一组→bh、cl一组→bh、al一组→ch、al一组→ch、bl一组
  但*不能开成ah、al或bh、bl或ch、cl。此外因为电子*件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将*件的响应时间考虑进去,否则当上臂(或下臂)尚未*关闭,下臂(或上臂)就已开启,结果就造成上、下臂短路而使功率晶体管烧毁。
  当电机转动起来,控制部会再根据驱动器设定的速度及加/减速率所组成的命令(command) 与hall-sensor信号变化的速度加以比对(或由软件运算)再来决定由下一组(ah、bl或ah、cl或bh、cl或……)开关导通,以及导通时间长短。速度不够则开长,速度过头则减短,此部份工作就由pwm来完成。pwm是决定电机转速快或慢的方式,如何产生这样的pwm才是要*较精准速度控制的*。高转速的速度控制*须考虑到系统的clock 分辨率是否*掌握处理软件指令的时间,另外对于hall-sensor信号变化的资料存取方式也影响到处理器效能与判定正确性、实时性。至于低转速的速度控制尤其是低速起动则因为回传的hall-sensor信号变化变得更慢,怎样撷取信号方式、处理时机以及根据电机特性适当配置控制参数值就显得*重要。或者速度回传改变以encoder变化为参考,使信号分辨率增加以期得到更佳的控制。电机能够运转顺畅而且响应良好,p.i.d.控制的恰当与否也无法忽视。之前提到直流无刷电机是闭回路控制,因此回授信号就等于是告诉控制部现在电机转速距离目标速度还差多少,这就是误差(error)。知道了误差自然就要补偿,方式有传统的工程控制如p.i.d.控制。但控制的状态及环境其实是复杂多变的,若要控制的坚固耐用则要考虑的因素恐怕不是传统的工程控制能*掌握,所以模糊控制、专家系统及*经网络也将被纳入成为智能型p.i.d.控制的重要理论。

直流电机的工作原理

  一、直流发电机工作原理
  直流发电机的工作原理就是把电枢线圈中感应的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。
  感应电动势的方向按右手定则确定(磁感线指向手心,大拇指指向导体运动方向,其他四指的指向就是导体中感应电动势的方向。)
  在图1.1所示*,导体a b 、c d 的感应电动势方向分别由 b指向 a和由d 指向 c 。这时电刷 A呈正*性,电刷B 呈负*性。
  图1.1 直流发电机原理模型
  当线圈逆时针方向旋转180°时,这时导体c d 位于N *下,导体a b 位于S *下,各导体中电动势都分别改变了方向。
  图1.2 直流发电机原理模型
  从图看出,和电刷 A接触的导体*位于 N*下,同样,和电刷 B接触的导体*位于S *下。因此,电刷 A*有正*性,电刷 B*有负*性,所以电刷端能引出方向不变的但大小变化的脉振电动势。如果电枢上线圈数增多,并按照*的规律把它们连接起来,可使脉振程度减小,就可获得直流电动势。这就是直流发电机的工作原理。
  二、直流电动机的工作原理
  导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。
  图1.3 直流电动机的原理模型
  当电枢转了180°后,导体 cd转到 N*下,导体ab转到S*下时,由于直流电源供给的电流方向不变,仍从电刷 A流入,经导体cd 、ab 后,从电刷B流出。这时导体cd 受力方向变为从右向左,导体ab 受力方向是从左向右,产生的电磁转矩的方向仍为逆时针方向。
  图1.4 直流电动机原理模型
  因此,电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由导体 ab和cd 流入,使线圈边只要处于N *下,其中通过电流的方向总是由电刷A 流入的方向,而在S *下时,总是从电刷 B流出的方向。这就*了每个*下线圈边中的电流*是一个方向,从而形成一种方向不变的转矩,使电动机能连续地旋转。这就是直流电动机的工作原理。

电动机起动前的检查方法
  (1)新的或长期停用的电机,使用前应检查绕组间和绕组对地*缘电阻。通常对500V以下的电机用500V*缘电阻表;对500-1000V的电机用1000V*缘电阻表;对1000V以上的电机用2500V*缘电阻表。*缘电阻每千伏工作电压不得小于1MΩ,并应在电机冷却状态下测量。
  (2)检查电机的外表有无裂纹,各紧固螺钉及*件是否*,电机的固定情况是否良好。 (3)检查电机传动机构的工作是否*。 (4)根据铭牌所示数据,如电压、功率、频率、联结、转速等与电源、负载比较是否相*。 (5)检查电机的通风情况及轴承润滑情况是否正常。(6)扳动电机转轴,检查转子能否自由转动,转动时有无杂声。 (7)检查电机的电刷装配情况及举刷机构是否灵活,举*柄的位置是否正确。(8)检查电机接地装置是否*。
  电机行业标准
  GB/T 1993-1993 旋转电机冷却方法
  GB 20237-2006 起重冶金和屏蔽电机*要求
  GB/T 2900.25-2008 电工*语 旋转电机
  GB/T 2900.26-2008 电工*语 控制电机
  GB 4831-1984 电机产品型号编制方法
  GB 4826-1984 电机功率等级
  */T 1093-1983 牵引电机 基本试验方法

电机的用途
  1:伺服电动机
  伺服电动机广泛应用于各种控制系统中,能将输入的电压信号转换为电机轴上的机械输出量,拖动被控制元件,从而*控制目的。
  伺服电动机有直流和交流之分,*早的伺服电动机是一般的直流电动机,在控制精度不高的情况下,才采用一般的直流电机做伺服电动机。目前的直流伺服电动机从结构上讲,就是小功率的直流电动机,其励磁多采用电枢控制和磁场控制,但通常采用电枢控制。
  2:步进电动机
  步进电动机主要应用在数控机床制造领域,由于步进电动机不需要A/D转换,能够直接将数字脉冲信号转化成为角位移,所以一直被认为是*理想的数控机床执行元件。
  除了在数控机床上的应用,步进电机也可以用在其他的机械上,比如作为自动送料机中的马达,作为通用的软盘驱动器的马达,也可以应用在打印机和绘图仪中。
  3:力矩电动机
  力矩电动机具有低转速和大力矩的特点。一般在纺织工业中经常使用交流力矩电动机,其工作原理和结构和单相异步电动机的相同。
  4:开关磁阻电动机
  开关磁阻电动机是一种新型调速电动机,结构*其简单且坚固,成本低,调速性能优异,是传统控制电动机强有力竞争者,具有强大的市场*。
  5:无刷直流电动机
  无刷直流电动机的机械特性和调节特性的线性度好,调速范围广,寿命长,维护方便噪声小,不存在因电刷而引起的一系列问题,所以这种电动机在控制系统中有很大的应用。
  6:直流电动机
  直流电动机具有调速性能好、起动容易、能够载重起动等优点,所以目前直流电动机的应用仍然很广泛,尤其在可控硅直流电源出现以后。
  7:异步电动机
  异步电动机具有结构简单,制造、使用和维护方便,运行*以及质量较小,成本较低等优点。异步电动机主要广泛应用于驱动机床、水泵、鼓风机、压缩机、起重卷扬设备、矿山机械、轻工机械、农副产品加工机械等大多数工农生产机械以及家用电器和*器械等。
  在家用电器中应用比较多,例如电扇、电冰箱、空调、吸尘器等。
  8:同步电动机
  同步电动机主要用于大型机械,如鼓风机、水泵、球磨机、压缩机、轧钢机以及小型、微型仪器设备或者充当控制元件。其中三相同步电动机是其主体。此外,还可以当调相机使用,向电网输送电感性或者电容性无功功率。

减速电机
  减速电机是指减速机和电机(马达)的集成体。这种集成体通常也可称为齿轮马达或齿轮电机。通常由*的减速机生产厂进行集成组装好后成套供货。减速电机广泛应用于钢铁行业、机械行业等。使用减速电机的优点是简化设计、节省空间。
  减速电机概述
  1、减速电机结合国际技*要求制造,具有很高的科技含量。
  2、节省空间,*耐用,承受过载能力高,功率可达95KW以上。
  3、能耗低,性能*,减速机效率*95%以上。
  4、振动小,噪音低,节能高,选用优质段钢材料,钢性铸铁箱体,齿轮表面经过高频热处理。
  5、经过精密加工,确保定位精度,这一切构成了齿轮传动总成的齿轮减速电机配置了各类电机,形成了机电一体化,**了产品使用质量特征。
  6、产品才用了系列化、模块化的设计思想,有广泛的适应性,本系列产品有*其多的电机组合、安装位置和结构方案,可按实际需要选择任意转速和各种结构形式。
  减速电机分类
  1、大功率齿轮减速电机
  2、同轴式斜齿轮减速电机
  3、平行轴斜齿轮减速电机
  4、螺旋锥齿轮减速电机
  5、YCJ系列齿轮减速电机
  减速电机广泛应用于冶金、矿山、起重、运输、水泥、建筑、化工、纺织、印染、制药等各种通用机械设备的减速传动机构。

电机保养
  *电机保养维修中心电机保养流程:清洗定转子--更换碳刷或其他*部件--真空F级压力浸漆--烘干--校动平衡。
  1、使用环境应经常保持干燥,电动机表面应保持清洁,进风口不应受尘土、纤维等阻碍。
  2、当电动机的热保护连续发生动作时,应查明故障来自电动机还是超负荷或保护装置整定值太低,消除故障后,方可投入运行。
  3、应*电动机在运行过程中良好的润滑。一般的电动机运行5000小时左右,即应补充或更换润滑脂,运行中发现轴承过热或润滑变质时,液压及时换润滑脂。更换润滑脂时,应清除旧的润滑油,并有汽油洗净轴承及轴承盖的油槽,然后将ZL-3锂基脂填充轴承内外圈之间的空腔的1/2(对2*)及2/3(对4、6、8*)。
  4、当轴承的寿命终了时,电动机运行的振动及噪声将明显*,检查轴承的径向游隙*下列值时,即应更换轴承。
  5、拆卸电动机时,从轴伸端或非伸端取出转子都可以。如果没有*要卸下风扇,还是从非轴伸端取出转子较为便利,从定子中抽出转子时,应*止损坏定子绕组或*缘。
  6、更换绕组时*须记下原绕组的形式,尺寸及匝数,线规等,当失落了这些数据时,应向制造厂索取,随意更改原设计绕组,常常使电动机某项或几项性能恶化,甚至于无法使用。

变频电机介绍
  变频电机的构造原理
  电动机的调速与控制,是工农业各类机械及办公、民生电器设备的基础技*之一。随着电力电子技*、微电子技*的惊人发展,采用“*变频感应电动机+变频器”的交流调速方式,正在以其卓越的性能和经济性,在调速领域,引导了一场取代传统调速方式的更新换代的变革。它给各行各业带来的福音在于:使机械自动化程度和生产效率大为*、节约能源、*产品合格率及产品质量、电源系统容量相应*、设备小型化、增加舒适性,目前正以很快的速度取代传统的机械调速和直流调速方案。
  由于变频电源的特殊性,以及系统对*或低速运转、转速动态响应等需求,对作为动力主体的电动机,提出了苛刻的要求,给电动机带来了在电磁、结构、*缘各方面新的课题。
  变频电机的应用
  变频调速目前已经成为主流的调速方案,可广泛应用于各行各业无级变速传动。
  特别是随着变频器在工业控制领域内日益广泛的应用,变频电机的使用也日益广泛起来,可以这样说由于变频电机在变频控制方面较普通电机的*性,凡是用到变频器的地方我们都不难看到变频电机的身影。

直线电机介绍
  机床上传统的“旋转电机 + 滚珠丝杠”进给传动方式,由于受自身结构的限制 ,在进给速度、加速度、快速定位精度等方面很难有突破性的*, 已无法满足超*切削、超精密加工对机床进给系统伺服性能提出的更高要求。直线电机将电能直接转换成直线运动机械能,不需要任何中间转换机构的传动装置。具有起动推力大、传动刚度高、动态响应快、定位精度高、行程长度不受限制等优点。在机床进给系统中,采用直线电动机直接驱动与原旋转电机传动的*大区别是取消了从电机到工作台(拖板)之间的机械传动环节,把机床进给传动链的长度缩短为*,因而这种传动方式又被称为“*传动”。正是由于这种“*传动”方式, 带来了原旋转电机驱动方式无法*的性能指标和优点。
  (1)*响应
  由于系统中直接取消了一些响应时间常数较大的机械传动件(如丝杠等),使整个闭环控制系统动态响应性能大大*,反应异常灵敏快捷。 (2)精度
  直线驱动系统取消了由于丝杠等机械机构产生的传动间隙和误差,减少了插补运动时因传动系统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大*机床的定位精度。
  (3)动刚度高由于“直接驱动”,避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象, 同时也*了其传动刚度。
  (4)速度快、加减速过程短
  由于直线电动机*早主要用于磁悬浮列车(时速可达500km/h),所以用在机床进给驱动中, 要满足其超*切削的*大进给速度(要求达60~100M/min 或更高)当然是没有问题的。也由于上述“*传动”的*响应性,使其加减速过程大大缩短。以实现起动时***, *运行时又能*准停。可获得较高的加速度,一般可达2~10g(g=9.8m/s2),而滚珠丝杠传动的*大加速度一般只有0.1~0.5g。
  (5) 行程长度不受限制在导轨上通过串联直线电机, 就可以无限延长其行程长度。
  (6)运动动安静、噪音低。由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。
  (7)效率高。由于无中间传动环节,消除了机械摩擦时的能量损耗,传动效率大大*。

电动机法则
  法则1:电动机的力矩是与*时间内通过的电流与电压的乘积成比例、并在启动时(未转动时)取得*大值。(根据这个,通常因为电压*,所以只和电流量成比例)
  法则2:要*电流,可以通过加粗线圈减少电阻、或减少线圈数(线圈的总长度)。或者,增加负荷。
  法则3:线圈线加粗了就不要增加线圈数(不减少的话转子里收不进去),相反线圈线改细而不增加线圈数的话,纯粹*转速会使力矩减小而无法使用,因此请注意。
  法则4:一般来说,线圈数越少、转子的电阻越低,导致电流变大、转速*。
  法则5:一般来说,线圈数越少力矩越小,话虽这么说,说到底这是对于做*相同线径而线圈数不同的转子而言。现实中,因为是低线圈数配合大线径,这样转子的内部阻抗减小,使更多的电流通过,所以力矩、转速都*,这是常识了。还有,电机的输出和磁铁的磁性有很大的关系,近年来和线圈数的多少相比,磁铁的磁强、转子中的线径(转子内阻)等也是需要注意的。(特别是TAMIYA的电机,需要注意的是磁铁强度、转子长短因各个型号不同多种多样。)
  法则6:相同的线圈数的话,依一重、二重、三重、四重、五重、六重的顺序,线径变细,线圈的密度增高。(所谓的多重线圈,就是同时用多根线绕成。Double=二重,也就是用2根线同时在转子的芯上绕成。一般而言,虽然是同样的线圈数多重绕线的电感(浅显的说就是线圈的反抗)增加、因此冲击减少,会有柔和的感觉。相反,多数情况下耗电量减少。转子说到底就是线圈,在切换*性时,会包含交流成分。与直流电的“直流阻抗”不同,会有另一种形式的阻抗。详细请参考高频电路的教科书。)
  法则7:总的来说*程度上多重绕线的话,容易做出动平衡良好、旋转平稳的转子。(但是一般只做到四重“Quart”绕线,再往下就是看各位的兴趣了。)
  法则8:进角不象线圈数那样对耗电量、输出有影响。(如果改变进角而导致耗电量急剧恶化,那是齿数比的责任。通过改变进角可以使空载转速大幅改变,但作为电机基本特性的力矩、输出等不会意外改变。)
  法则9:相同的转子,磁铁的磁力强的话,转速、力矩都会*。
  法则10:磁力大小和相距距离的平方成比例,因此即使使用相同的磁铁,和转子间的距离(所谓的 air gap)不同的话、力矩和效率就会变动。(一般的,虽说air gap小可以使电动机*高性能,但如果过窄的话,芯子和磁铁可能会发生摩擦。作为对策,2001年的时候开始,对23圈的stock电机做切削以增加圆度的厂商开始出现(HPI/Orion,Kawada(川田模型)等)。另外,Off road的情况下,由于小石子嵌入而导致失速的危险性很高,本来合适的air gap可能对于off road来说就不对了。 )
  法则11:由于电流的影响,正*的电刷比负*损耗快。
  法则12:温度对电动机的性能有很大的影响。
  所谓的“过热”就是,电机的电阻及电刷的摩擦而带来的温度上升,伴有线圈的电阻增加及磁铁磁性降低等重叠发生的现象。
  法则13:无道理的油门动作是电机发热的根本原因。
  法则14:再出色的电机,也不能*止驾驶失误。
  <力矩和电机负荷的关系>
  正如法则1所写的,电动机的*大特点是,“启动时产生*大力矩”。这是和内燃机构的发动机*根本的不同点,就算头脑里已经知道了,现在还是时常被忘记。顺便提一句,对于内燃机构,所谓的力矩因为是“燃料燃烧的程度”,所以*程度上即使转速* (力矩)也可以发挥出来。