图文详情
产品属性
相关推荐
Categories Capacitors
Film Capacitors
Manufacturer Cornell Dubilier Electronics (CDE)
Series WMF
Packaging ? Bulk ?
Part Status Active
Capacitance 0.1μF
Tolerance ±10%
Voltage Rating - AC 200VVoltage Rating - DC 400V
Dielectric Material Polyester
Operating Temperature -55°C ~ 125°C
Mounting Type Through Hole
Package / Case Axial
Size / Dimension 0.488" Dia x 1.063" L (12.40mm x 27.00mm)
Height - Seated (Max) -
Termination PC Pins
Lead Spacing -
Applications General Purpose
Ratings -
3D机器视觉的最重要任何,肯定是基于数据来实现3D建模。这个应用在产业端十分重要,地理信息系统、勘探、工程,以及无人驾驶,都需要大量的3D建模工作来参与。
而消费者级的3D建模今天也在到来,我们已经可以看到在手机端通过3D结构光来完成数据收集,从而达成3D建模的玩法。
跟3D感知一样,3D建模也是利用摄像头或者传感器来收集数据,最终通过不同的解决方案完成建模。
然而这个领域还是有很多问题等待解决。比如说,今天我们进行3D建模时,还需要非常痛苦的一点点收集数据,必须保证数据的对齐和精准排列。否则出来的3D模型就是杂乱无章的。这显然让大众完3D建模的热情减退,并且给很多工程级项目增添了非常多难度。
AI的到来,正在帮助这种情况有所改变。在深度学习算法的帮助下,机器视觉领域正在研究如何在散乱、不规则、巨大数量的数据中完成3D建模。这需要对抗生成以及先验表示等非常多的方案,但带来的效果非常值得期待。
比如说今天已经有3D建模方案,在深度学习的帮助下实现对密林的重建。然而其用来进行点云建模的图像数据中,有很多被树叶遮挡的部分。这时候就可以用AI来增强3D建模的先验知识,主动“脑补”出遮挡物背后的真实样子。
不仅是修复遮挡模型和瑕疵数据,机器视觉技术与3D建模的融合,还可以让很多无人设备具有更雪亮的“眼睛”。比如无人驾驶汽车,或许可以基于“大脑”中的3D建模算法,来脑补智能摄像头尚未发现的环境。这点在复杂立交桥和停车场中格外有用。
在消费者端,3D建模与机器视觉的结合也将带来新的想象力,比如消费者可以根据照片来重建精准的3D模型,或者傻瓜式完成建模要用的数据收集。让不那么专业的人也能建设出专业的3D模型,这个改变背后的想象力惊人。
更好的深度传感器解决方案
WMF4P1K-F
CDE
无铅环保型
直插式
单件包装
工业电力电气设备
径向引线型
圆柱体型
0.1UF
400V
-55-155