振荡器现状
日本金石、始建于1948年的nibondempakogyo公司和美国摩托罗位、韩国的sunny-emi等公司,都是生产石英晶体器件较大的厂商。振荡器就像电子系统中的电源一样无处不在,有人认为它们的重要性等同于电源,在任何需要时序信号的东西中都能发现它们的应用,从数字手表到电视和PC。就石英晶体振荡器而言,与国外先进水平比较,主要是在片式化、小型化、高频化和频率温度特性等方面还存在差距。尽快缩小这些差距,进一步扩大生产规模,提高产品性价比,是提高在国际市场上竞争力的必由之路。与此同时,还要跟踪该器件发展的新动向,如系统时钟等振荡器的研究与应用。了解更多不同类别的振荡器请点击
https://www.dzsc.com/product/searchfile/553.html
时钟振荡器
通过掩膜选项,可以选择石英晶体振荡器或RC振荡器,两者都可作为系统时钟。不管用哪种振荡器,其信号都支持系统时钟。HALT模式会停止系统振荡器并忽略任何外部信号,由此来节省电能。接下来让我们明明白白的认识下UPD78F0411系统时钟振荡器。
1. X1 振荡器
X1 振荡器采用晶体振荡器或陶瓷振荡器(2 ~ 10MHz),连接到X1 和X2 引脚。
同样可以输入外部时钟。EXCLK 引脚输入时钟信号。
图5-10 为X1 振荡器的外部电路示例。
2. XT1 振荡器
XT1 振荡器采用晶体振荡器(标准值为:32.768 kHz),连接到XT1 和XT2 引脚。
图5-11 为XT1 振荡器的外部电路示例。
注意事项1. 在使用X1 振荡器和XT1 振荡器时,图5-10 和图5-11 中被虚线包围的部分的配线应按照如下配线方法配线,以防止连接线电容产生不利影响。
1.连接线越短越好。
2.连接线不应与其他信号线交叉。流经的电流变化较大的信号线不要在振荡器周围布线。
3.要保持振荡器电容器的接地点电压与VSS相同。不要将电容的地信号接入大电流地。
4.不要从振荡器获取信号。
注意 XT1 振荡器被设计成低振幅电路,以降低功耗。
图5-12 为不正确的振荡器连接示例
备注 在使用副系统时钟时,分别用XT1 和XT2 代替X1 和X2。串联电阻也串在XT2 这边。
备注 在使用副系统时钟时,分别用XT1 和XT2 代替X1 和X2。串联电阻也插在XT2 这边。
注意事项 2. 当X2 和XT1 并行连接时,X2 的串扰噪音会叠加到XT1,从而产生错误。
3. 不使用副系统时钟
为了降低功耗,如果无需使用副系统时钟,或者不使用副系统时钟作为I/O 端口,则可以设置XT1 和XT2 引脚为I/O 模式(OSCSELS = 0),并通过一个电阻独立连接到VDD 或VSS。
备注 OSCSELS:时钟操作模式选择寄存器的第4 位(OSCCTL)
4. 内部高速振荡器
78K0/LC3 产品中包含内部高速振荡器。可以通过内部振荡模式寄存器(RCM)控制振荡。复位释放后,内部高速振荡器自动开始振荡(8 MHz (TYP.))。
5. 内部低速振荡器
78K0/LC3 产品中包含内部低速振荡器。
内部低速振荡时钟只作为看门狗定时器、8 位定时器H1 和LCD 控制器/驱动器的时钟使用。内部低速振荡时钟不能用作CPU 时钟。
可以通过选项字节选择内部低速振荡器“可由软件停止”或“不能停止”。如果设置“可由软件停止”,则可由内部振荡模式寄存器(RCM)控制振荡。
复位释放后,内部低速振荡器自动产生振荡,同时如果使用选项字节允许看门狗定时器操作,则可以驱动看门狗定时器(240 kHz (TYP.))。
6. 预分频器
当CPU 使用主系统时钟时,通过分频主系统时钟,预分频器可以产生多种时钟。
总述
一切数字设备都需要时钟源,如硅与MEMS(微机电系统)振荡器、石英晶体或陶瓷诣振器。例如,电信与服务器的一块PCB(印制电路板)上就可能需要十几种时钟。设计者实现传统时钟源时采用的是石英晶体振荡器,但MEMS和纯硅振荡器正在这个高度分化的市场中获得立足点。应用推动着一种技术的适用性。这一切说明系统时钟振荡器的运用是很广泛的。通过系统时钟振荡器认识,选择或判断系统时钟振荡器就应成为一种明明白白的工作。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。