处理电源电压反转有几种众所周知的方法。zui明显的方法是在电源和负载之间连接一个二极管,但是由于二极管正向电压的原因,这种做法会产生额外的功耗。虽然该方法很简洁,但是二极管在便携式或备份应用中是不起作用的,因为电池在充电时必须吸收电流,而在不充电时则须供应电流。
另一种方法是使用图1所示的MOSFET电路之一。
图1:传统的负载侧反向保护
对于负载侧电路而言,这种方法比使用二极管更好,因为电源(电池)电压增强了MOSFET,因而产生了更少的压降和实质上更高的电导。该电路的NMOS版本比PMOS版本更好,因为分立式NMOS晶体管导电率更高、成本更低且可用性更好。在这两种电路中,MOSFET都是在电池电压为正时导通,电池电压反转时则断开连接。MOSFET的物理“漏极”变成了电源,因为它在PMOS版本中是较高的电位,而在NMOS版本中则是较低的电位。由于MOSFET在三极管区域中是电对称的,因此它们在两个方向上都能很好地传导电流。采用此方法时,晶体管必须具有高于电池电压的zui大VGS和VDS额定值。
遗憾的是,这种方法仅对负载侧电路有效,无法配合能够给电池充电的电路工作。电池充电器将产生电源,重新启用MOSFET并重新建立至反向电池的连接。图2展示了采用NMOS版本的一个实例,图中所示的电池处于故障状态。
图2:具有一个电池充电器的负载侧保护电路
当电池接入时,电池充电器处于闲置状态,负载和电池充电器与反向电池安全去耦。然而,如果充电器变至运行状态(例如:附联了输入电源连接器),则充电器在NMOS的栅极和源极之间产生一个电压,这增强了NMOS,从而实现电流传导。这一点在图3中更形象。
图3:传统的反向电池保护方案对电池充电器电路无效
负载和充电器虽与反向电压隔离,但是起保护作用的MOSFET现在面临的一大问题是功耗过高。在这种情况下,电池充电器变成了一个电池放电器。当电池充电器为MOSFET提供了足够的栅极支持以吸收由充电器输送的电流时,该电路将达到平衡。例如,如果一个强大MOSFET的VTH约为2V,而且充电器能够在2V电压下提供电流,则电池充电器输出电压将稳定在2V(MOSFET的漏极处在2V+电池电压)。MOSFET中的功耗为ICHARGE?(VTH+VBAT),因而使MOSFET升温发热,直到产生的热量散逸离开印刷电路板。该电路的PMOS版本也是一样。
下面将介绍该方法的两种替代方案,这些替代方案各有优缺点。
N沟道MOSFET设计
第1种方案采用一个NMOS隔离器件,如图4所示。
该电路的算法是:如果电池电压超过了电池充电器输出电压,则必须停用隔离MOSFET。
如同上述的NMOS方法一样,在该电路中,MN1连接在介于充电器/负载和电池端子之间接线的低压侧。然而,晶体管MP1和Q1现在提供了一个检测电路,该电路在电池反接的情况下将停用MN1。反接电池将MP1的源极升举至高于其连接至充电器正端子的栅极。接着,MP1的漏极通过R1将电流输送至Q1的基极。然后,Q1将MN1的栅极分流至地,防止充电电流在MN1中流动。R1负责控制在反向检测期间流到Q1的基极电流,而R2则在正常操作中为Q1的基极提供泄放。R3赋予了Q1将MN1的栅极拉至地电位的权限。R3/R4分压器限制MN1栅极上的电压,这样栅极电压在反向电池热插拔期间不必下降那么多。
zui坏情况是电池充电器已经处于运行状态、产生其恒定电压电平,附联了一个反接电池时。在这种情况下,必需尽可能快地关断MN1,以限制消耗高功率的时间。该电路带有R3和R4的这一特殊版本
zui适合12V铅酸电池应用,但是在单节和两节锂离子电池产品等较低电压应用中,可以免除R4。电容器C1提供了一个超快速充电泵,以在反向电池附联期间下拉MN1的栅极电平。对于
zui差情形(附联一个反向电池时充电器已使能的状况再次出现),C1非常有用。
该电路的缺点是需要额外的组件,R3/R4分压器在电池上产生了一个虽然很小、但却是持续的负载。
此类组件大多是纤巧的。MP1和Q1不是功率器件,而且通常可采用SOT23-3、SC70-3或更小的封装。MN1应具有非常优良的导电性,因为它是传输器件,但是尺寸不必很大。由于它在深三极管区工作,并且得到了大幅的栅极强化,因此其功耗即使对于导电性中等的器件来说也很低。例如,100m?6?8以下的晶体管也经常采用SOT23-3封装。
图4:一款可行的反向电池电路
不过,采用一个小传输晶体管的缺点是:与电池充电器串联的额外阻抗延长了恒定电压充电阶段的充电时间。例如,如果电池及其配线具有100m?6?8的等效串联电阻,并且采用了一个100m?6?8的隔离晶体管,那么恒定电压充电阶段中的充电时间将加倍。
MP1和Q1组成的检测和停用电路停用MN1的速度不是特别快,而且它们无须如此。虽然MN1在反向电池附联期间产生高功耗,但是关断电路只需“在
zui后”断开MN1连接。它必需在MN1升温幅度大到导致受损之前断开MN1连接。几十微秒的断开连接时间可能比较适合。另一方面,在反接电池有机会将充电器和负载电压拉至负值之前停用MN1至关重要,因而需要采用C1。基本上,该电路具有一条AC和一条DC停用路径。
用一个铅酸电池和LTC4015电池充电器对此电路进行了测试。如图5所示,当反向电池热插拔时电池充电器处于OFF状态。反向电压不会被传送至充电器和负载。
图5:充电器处于关断状态的NMOS保护电路
值得注意的是,MN1需要一个等于电池电压的VDS额定值和一个等于1/2电池电压的VGS额定值。MP1需要一个等于电池电压的VDS和VGS额定值。
图6显示了一种更加严重的情况,就是在反向电池进行热插拔时电池充电器已处于正常运行状态。电池反接将下拉充电器侧电压,直到检测和保护电路使其脱离运行状态,从而让充电器安全返回至其恒定电压电平。动态特性将因应用而异,而电池充电器上的电容将对zui终结果起到很大的作用。在该测试中,电池充电器兼具一个高Q值陶瓷电容器和一个Q值较低的聚合物电容器。
图6:充电器处于运行状态的NMOS保护电路
总之,建议在电池充电器上采用铝聚合物电容器和铝电解电容器,以改善正常的正向电池热插拔期间的性能。由于极度的非线性,纯陶瓷电容器会在热插拔期间产生过高的过冲,背后的原因是:当电压从0V升至额定电压时,其电容的降幅可达惊人的80%。这种非线性在低电压条件下激发高电流的流动,而当电压上升时则使电容快速递减;这是一种导致非常高电压过冲的致命组合。凭经验,一个陶瓷电容器与一个较低Q值、电压稳定的铝电容器甚至钽电容器的组合似乎是
zui稳健的组合形式。
P沟道MOSFET设计
图7示出了第二种方法,即采用一个PMOS晶体管作为保护器件。
图7:PMOS晶体管传输元件版本
在此电路中,MP1是反向电池检测器件,MP2是反向隔离器件。利用MP1的源极至栅极电压来比较电池的正端子与电池充电器输出。如果电池充电器端子电压高于电池电压,则MP1将停用主传输器件MP2。因此,如果电池电压被驱动至低于地电位,则显然,检测器件MP1将把传输器件MP2驱动至关断状态(将其栅极干扰至其源极)。不管电池充电器是使能并形成充电电压还是停用(0V),它都将完成上述操作。
该电路的zui大优势是PMOS隔离晶体管MP2根本不具备将负电压传送至充电器电路和负载的权限。图8对此做了更加清晰的图解。
图8:共源共栅效应的图解
通过R1在MP2的栅极上可实现的
zui低电压为0V。即使MP2的漏极被拉至远低于地电位,其源极也不会施加显着的电压下行压力。一旦源极电压降至晶体管高于地电位的VTH,晶体管将解除自身偏置,而且它的传导性逐渐消失。源极电压越接近地电位,晶体管的偏置解除程度越高。这种特性加上简单的拓扑,使得这种方法比前文介绍的NMOS方法更受青睐。与NMOS方法相比,它确实存在着PMOS晶体管导电性较低且成本较高的不足。
尽管比NMOS方法简单,但是该电路还有一个很大的缺点。虽然它始终提供针对反向电压的保护作用,但是它可能不会总是将电路连接到电池。当栅极如图所示交叉耦合时,该电路形成了一个闭锁存储元件,此元件有可能选择错误的状态。虽然难以实现,但存在这样一种情况:充电器正在产生电压(比如12V),在一个较低的电压(比如8V)附联电池,电路断开连接。
在这种情况下,MP1的源极至栅极电压为+4V,因而强化MP1并停用MP2。这种情况如图9所示,并在节点上列出了稳定的电压。
图9:采用PMOS保护电路时可能的阻塞状态图解
为了实现该条件,电池接入时充电器必须已经处于运行状态。如果电池在充电器使能之前接入,则MP1的栅极电压完全由电池上拉,因而停用MP1。当充电器接通时,它产生一个受控的电流(而不是高电流冲击),这降低了MP1接通、MP2关断的可能性。
另一方面,如果充电器在电池附联之前启用,则MP1的栅极只需简单地跟随电池充电器输出,因为它是由泄放电阻器R2上拉的。未接入电池时,MP1根本没有接通和使MP2脱离运行状态的倾向。
当充电器已经启动并运行、而电池附联在后时,就会出现问题。在这种情况下,在充电器输出和电池端子之间存在瞬间差异,这将促使MP1使MP2脱离运行状态,因为电池电压强制充电器电容进行吸收。这使MP2从充电器电容器吸取电荷的能力与MP1使MP2脱离运行状态的能力之间形成了竞争。
该电路也用一个铅酸电池和LTC4015电池充电器进行了测试。将一个承受重负载的6V电源作为电池模拟器连接至一个已经使能的电池充电器jue对不会触发“断开连接”状态。所做的测试并不全面,应在关键应用中更加全面彻底地进行测试。即使电路确已锁定,停用电池充电器并重新启用它仍将始终导致重新连接。
故障状态可通过人为操控电路(在R1的顶端和电池充电器输出之间建立临时连接)进行演示。然而,普遍认为该电路更倾向于连接。如果连接失败确实成为一个问题,那么可以设计一款利用多个器件停用电池充电器的电路。图12给出了一个更加完整的电路例子。
图10示出了充电器被停用的PMOS保护电路的效果。
请注意,不论什么情况,电池充电器和负载电压都不会出现负电压传送。
图11示出了该电路处于“当反接电池进行热插拔时充电器已进入运行状态”这种不利情况下。
与NMOS电路的效果相差无几,在断开电路连接使传输晶体管MP2脱离运行状态之前,反向电池略微下拉充电器和负载电压。
在电路的这个版本中,晶体管MP2必须能够经受两倍于电池电压的VDS(一个用于充电器,一个用于反接电池)和等于电池电压的VGS。另一方面,MP1必须能够经受等于电池电压的VDS和两倍于电池电压的VGS。这项要求令人遗憾,因为对于MOSFET晶体管来说,额定VDS始终超过额定VGS。可以找到具有30VVGS容限和40VVDS容限的晶体管,适合铅酸电池应用。为了支持电压较高的电池,必须增添齐纳二极管和限流电阻器来修改电路。
图12示出了一个能够处理两个串联堆叠铅酸电池的电路实例。
图10:充电器处于关断状态的PMOS保护电路
图11:充电器处于运行状态的PMOS保护电路
ADI公司确信其所提供的信息是准确可靠的。但是,对于其使用以及任何可能因其使用而导致的对第三方zhuan利或其他权利的侵犯,ADI公司概不负责。规格如有变更,恕不另行通知。不得暗示或以其他方式授予ADI公司任何专利或专利权的使用许可。
图12:较高电压反向电池保护。
D1、D3和R3保护MP2和MP3的栅极免受高电压的损坏。当一个反接电池进行热插拔时,D2可防止MP3的栅极以及电池充电器输出快速移动至地电位以下。当电路具有反接电池或处于错误断开连接闭锁状态时,MP1和R1可检测出来,并利用缺失的LTC4015的RT特性来停用电池充电器。
结论
可以开发一种面向基于电池充电器应用的反向电压保护电路。人们开发了一些电路并进行了简略的测试,测试结果令人鼓舞。对于反向电池问题并不存在什么高招,不过,希望本文介绍的方法能够提供充分的启示,即存在一种简单、低成本的解决方案。