功率电感:解析PCB分层堆叠设计在抑制EMI上的作用(二)

发布时间:2017/6/21 9:00:42

6层板

如果4层板上的元件密度比较大,则采用6层板。但是,6层板设计中某些叠层方案对电磁场的屏蔽作用不够好,对电源汇流排瞬态信号的降低作用甚微。下面讨论两个实例。

例将电源和地分别放在第2和第5层,由于电源覆铜阻抗高,对控制共模EMI辐射非常不利。不过,从信号的阻抗控制观点来看,这一方法却是非常正确的。

第二例将电源和地分别放在第3和第4层,这一设计解决了电源覆铜阻抗问题,由于第1层和第6层的电磁屏蔽性能差,差模EMI增加了。如果两个外层上的信号线数量最少,走线长度很短(短于信号谐波波长的1/20),则这种设计可以解决差模EMI问题。将外层上的无元件和无走线区域铺铜填充并将覆铜区接地(每1/20波长为间隔),则对差模EMI的抑制特别好。如前所述,要将铺铜区与内部接地层多点相联。

通用高性能6层板设计一般将第1和第6层布为地层,第3和第4层走电源和地。由于在电源层和接地层之间是两层居中的双微带信号线层,因而EMI抑制能力是优异的。该设计的缺点在于走线层只有两层。前面介绍过,如果外层走线短且在无走线区域铺铜,则用传统的6层板也可以实现相同的堆叠。

另一种6层板布局为信号、地、信号、电源、地、信号,这可实现信号完整性设计所需要的环境。信号层与接地层相邻,电源层和接地层配对。显然,不足之处是层的堆叠不平衡。

这通常会给加工制造带来麻烦。解决问题的办法是将第3层所有的空白区域填铜,填铜后如果第3层的覆铜密度接近于电源层或接地层,这块板可以不严格地算作是结构平衡的电路板。填铜区必须接电源或接地。连接过孔之间的距离仍然是1/20波长,不见得处处都要连接,但理想情况下应该连接。

10层板

由于多层板之间的绝缘隔离层非常薄,所以10或12层的电路板层与层之间的阻抗非常低,只要分层和堆叠不出问题,完全可望得到优异的信号完整性。要按62mil厚度加工制造12层板,困难比较多,能够加工12层板的制造商也不多。

由于信号层和回路层之间总是隔有绝缘层,在10层板设计中分配中间6层来走信号线的方案并非。另外,让信号层与回路层相邻很重要,即板布局为信号、地、信号、信号、电源、地、信号、信号、地、信号。

这一设计为信号电流及其回路电流提供了良好的通路。恰当的布线策略是,第1层沿X方向走线,第3层沿Y方向走线,第4层沿X方向走线,以此类推。直观地看走线,第1层1和第3层是一对分层组合,第4层和第7层是一对分层组合,第8层和第10层是一对分层组合。当需要改变走线方向时,第1层上的信号线应藉由”过孔"到第3层以后再改变方向。实际上,也许并不总能这样做,但作为设计概念还是要尽量遵守。

同样,当信号的走线方向变化时,应该藉由过孔从第8层和第10层或从第4层到第7层。这样布线可确保信号的前向通路和回路之间的耦合最紧。例如,如果信号在第1层上走线,回路在第2层且只在第2层上走线,那么第1层上的信号即使是藉由“过孔”转到了第3层上,其回路仍在第2层,从而保持低电感、大电容的特性以及良好的电磁屏蔽性能。

如果实际走线不是这样,怎么办?比如第1层上的信号线经由过孔到第10层,这时回路信号只好从第9层寻找接地平面,回路电流要找到最近的接地过孔(如电阻或电容等元件的接地引脚)。如果碰巧附近存在这样的过孔,则真的走运。假如没有这样近的过孔可用,电感就会变大,电容要减小,EMI一定会增加。

当信号线必须经由过孔离开现在的一对布线层到其他布线层时,应就近在过孔旁放置接地过孔,这样可以使回路信号顺利返回恰当的接地层。对于第4层和第7层分层组合,信号回路将从电源层或接地层(即第5层或第6层)返回,因为电源层和接地层之间的电容耦合良好,信号容易传输。

多电源层的设计

如果同一电压源的两个电源层需要输出大电流,则电路板应布成两组电源层和接地层。在这种情况下,每对电源层和接地层之间都放置了绝缘层。这样就得到我们期望的等分电流的两对阻抗相等的电源汇流排。如果电源层的堆叠造成阻抗不相等,则分流就不均匀,瞬态电压将大得多,并且EMI会急剧增加。

如果电路板上存在多个数值不同的电源电压,则相应地需要多个电源层,要牢记为不同的电源创建各自配对的电源层和接地层。在上述两种情况下,确定配对电源层和接地层在电路板的位置时,切记制造商对平衡结构的要求。

总结

鉴于大多数工程师设计的电路板是厚度62mil、不带盲孔或埋孔的传统印制电路板,本文关于电路板分层和堆叠的讨论都局限于此。厚度差别太大的电路板,本文推荐的分层方案可能不理想。此外,带盲孔或埋孔的电路板的加工制程不同,本文的分层方法也不适用。

电路板设计中厚度、过孔制程和电路板的层数不是解决问题的关键,优良的分层堆叠是保证电源汇流排的旁路和去耦、使电源层或接地层上的瞬态电压并将信号和电源的电磁场屏蔽起来的关键。理想情况下,信号走线层与其回路接地层之间应该有一个绝缘隔离层,配对的层间距(或一对以上)应该越小越好。根据这些基本概念和原则,才能设计出总能达到设计要求的电路板。现在,IC的上升时间已经很短并将更短,本文讨论的技术对解决EMI屏蔽问题是必不可少的。


 

上一篇:功率电感:USB接口电磁兼容(EMC)解决方案(一)
下一篇:功率电感:解析PCB分层堆叠设计在抑制EMI上的作用(一)