一、前言
当前,能源危机和环境污染与日俱增,发展高效、节能、零排放的清洁型纯电动汽车已成为国内外汽车工业发展的必然趋势。相比传统燃油车,电动汽车内含有高压部件,包括电机控制器、动力电池、电动压缩机和 DC/DC 等。这些高压部件都会涉及到绝缘问题,且电动汽车工作环境复杂,振动、温度、湿度以及部件老化等都会使整车绝缘性能下降。动力电池正负极通过绝缘层与底盘构成电流回路,当整车绝缘下降时,整车漏电电流就会增大,漏电电流达到一定值时,就会危及乘客安全以及整车电气系统的正常运行。因此,实时监测电动车辆高压系统对车辆的电气绝缘性能,确保车辆在绝缘状态下运行,对保证乘客人身安全、电气设备正常工作以及车辆安全运行具有重要意义。
二、相关标准法规
有关国内、国外的电动汽车电气安全防范相关标准法规有很多,汇总如表 1所示,这些法规标准对于安全要求大致相近,主要以高压动力电池防护为,衍生出相关防护条款,各标准法规都有详细的电动汽车绝缘阻抗的测量方法介绍以及相关规范说明,标准中对于绝缘性能评估都有一个评判关键指标-绝缘强度(Ω/V),国外标准大都采用≥500Ω/V,国内其采用≥100Ω/V。其中,GB/T 18384.3-2015 电动汽车安全要求 第 3 部分:人员触电防护中 6.7 规定在工作电压下,直流电路绝缘强度≥100Ω/V;SAE J1766 中 4.4.3 规定在系统标称电压下,直流电路绝缘强度≥500Ω/V。
表 1 标准法规 |
|
标准名称 |
标准号 |
EN |
1987-1、1987-2、1987-3 |
FMVSS/CMVSS |
No.305 |
GB |
18384.1、18384.2、18384.3 |
ISO |
6469-1、6469-2、6469-3、23273-3 |
SAE |
J1766/2344 |
JIS |
D5305-1、D5305-2、D5305-3 |
有关电动汽车零部件电气安全防范国内相关标准包括 GB/T 18488.1-2015、 GB/T 24347-2009 以及 GB/T 31467.3 等。其中 GB/T 18488.1-2015 中 5.2.7.3 规定驱动电机控制器的冷态与热态绝缘阻抗均不小于 1MΩ(以 540V 电压平台为例,对应绝缘强度接近 2000Ω/V)。GB/T 24347-2009 中 5.6 规定 DC/DC 绝缘强度≥500Ω/V。GB/T 31467.3 中 5.1.5 规定动力电池包绝缘强度≥100Ω/V。从上述国标分析可得,各个零部件对绝缘强度的要求相差较大,有的甚至接近整车的绝缘强度要求。实际上,整车高压系统包含多个部件,主要包括电机、电机驱动器、动力电池、PDU、电动压缩机、DC/DC、制动以及转向控制器等。如果各个零部件厂商按照国标对绝缘强度要求规定 100Ω/V,那么整车各零部件总的绝缘阻抗远就会低于 100Ω/V,整车绝缘阻抗不满足国标绝缘要求。
结合国内零部件指标现状,在对整车绝缘强度指标设定时,整车绝缘强度应高于国标之要求,各零部件的绝缘强度应高于整车一个等级。这样,整车总的绝缘强度才不至于超标,才能确保车辆的安全。这也是国外标准为何将整车绝缘强度指标定为≥500Ω/V,远高于国内指标的缘由。
三、绝缘监测原理
绝缘监测工作原理主要包括电流传感法、对称电压测量法、桥式电阻法、低频信号注入法等。其中低频信号注入法应用最为广泛,系统拓扑图见图 1。在其内部产生一个正负对称的方波信号,通过绝缘阻抗监测仪连接端子与直流高压系统和底盘之间的绝缘电阻 RF 构成测量回路,通过对采样电阻上分压的采集,计算得出 RF 大小。
图 1 低频信号注入法系统拓扑