每年,数十亿种晶体被制造出来,并且几乎在每个电子设备中使用。网络、数字手表甚至微波中的数字和模拟子系统都需要稳定的振荡器,以实现jing确定时并在数字电路中移动数据。除了XTAL振荡器电路布局之外,还需要选择合适的晶振,以提供稳定的时序。
在市场上可以找到的XTAL的制造频率范围为?10kHz至?100MHz。这些组件具有不同程度的固有抖动和温度敏感度,为系统选择正确的振荡器对于确保数字和模拟电路的准确时序至关重要。随着频率增加到GHz范围,将需要改变策略并为系统选择高度稳定的参考振荡器。这是需要了解的XTAL振荡器电路设计和组件选择,以及何时需要开始考虑更稳定的高频振荡器。
XTAL振荡器电路布局技巧
布置XTAL振荡器电路的目的是确保时钟信号与其他组件正确隔离,并确保输出上的漂移和抖动/相位噪声zui小。其中一些点与振荡器的化学成分有关(陶瓷与石英),而某些与布局有关(PDN去耦不足可能是造成抖动的主要来源之一)。在下面整理了一些用于布置XTAL振荡器电路的基本技巧。
1、将振荡器远离其他高频/高速信号。目的是减少XTAL振荡器电路(特别是输出引脚)与其他PCB电路之间的电容性串扰。
2、如果需要,请使用铜粉将时钟与其他电路隔离。请勿将铜倒在时钟下方的表层上。相反,只需使用内部接地层即可。
3、尝试防止其他信号的返回电流在时钟输出下方传播。
4、将任何电容器放置在输出上靠近时钟组件输出引脚的位置。任何电容器都应稳定并且具有足够高的自谐振频率(理想情况下,应超过时钟信号的3至5次谐波)。
系统时钟与嵌入式和同步时钟的比较
如果将XTAL振荡器电路用作一系列点对点功能块的系统时钟,则在布线时钟线时会遇到困难,因为需要确保时钟信号以相同的方式到达每个组件时间作为信号。目的是确保数据信号在正确的时间锁存在接收器中。正确执行此操作需要考虑组件中的传播延迟,这随着点对点链中组件数量的增加而变得极为困难。
降低时钟EMI的一种选择是使用与扩频时钟一起运行的组件。该技术可将功率分散到很宽的频率范围内,但会降低高速信号的峰值能量,进而降低感应宽带噪声的强度。扩频时钟涉及对时钟输出进行频率调制,然后在频率和相位处于特定值时触发下游电路(请参见下文)。这通常消除了对EMI滤波器,铁氧体磁珠,线圈和扼流圈的需求。
如果电路板需要在一定温度范围内以高精度时序运行,那么将需要考虑温度补偿的XTAL振荡器电路(TCXO)。这些组件在RF系统和高速数字系统中很常见。这些组件在温度补偿反馈环路内使用一个变容二极管。随着温度的变化,晶体的谐振频率也随之变化。变容二极管允许将谐振频率补偿回期望值。这些组件也可用作具有宽输出范围的压控设备。这种电路的一个例子如下所示。