麻省理工学院的工程师开发了一种系统,该系统可以感知地面阴影的微小变化,从而确定拐角处是否有移动物体。(麻省理工学院)
麻省理工学院的工程师开发了一种系统,该系统可以感知地面阴影的微小变化,以确定是否有拐角处有移动物体,以提高自动驾驶汽车的安全性。
在即将举行的国际智能机器人和系统国际会议(IROS)上发表的一篇论文中,研究人员描述了在停车场周围驾驶自动驾驶汽车和在走廊上驾驶自动轮椅的成功实验。当感应并停下驶近的车辆时,这种基于汽车的系统击败了传统的LiDAR(后者只能检测可见物体)超过了半秒。
“对于机器人在周围有其他移动物体或人的环境中移动的应用程序,我们的方法可以向机器人发出预警,提醒有人即将来临,因此车辆可以减速,调整路径并提前做好准备,以避免这项研究的共同作者,计算机科学与人工智能实验室(CSAIL)主任,安德鲁和恩纳·维特比(Andrew and Erna
Viterbi)电机工程与计算机科学教授说。“的梦想是为在街上快速行驶的车辆提供各种'X射线视觉'。”
当前,该系统仅在室内设置中进行了测试。在室内,机器人的速度要低得多,光照条件也更加一致,这使得系统更容易检测和分析阴影。
对于他们的工作,研究人员建立在他们称为“ ShadowCam”的系统上,该系统使用计算机视觉技术来检测和分类地面阴影的变化。麻省理工学院的教授威廉·弗里曼(William Freeman)和安东尼奥·托拉尔巴(Antonio Torralba)并非IROS论文的合著者,他们合作开发了该系统的早期版本,该版本在2017年和2018年的会议上进行了介绍。
ShadowCam使用来自摄像机的视频帧序列,这些摄像机针对特定区域,例如拐角处的地板。它可以检测不同图像之间光强度随时间的变化,这可能表明某些物体在移开或靠近。这些更改中的某些更改可能很难检测到,或者用肉眼看不见,并且可以由对象和环境的各种属性确定。然后,系统计算该信息,并将每个图像分类为包含静止的对象或动态的运动对象。如果它变成动态图像,它会做出相应的反应。
为了使ShadowCam适用于自动驾驶汽车,研究人员开发了一种结合了图像配准和新的视觉测距技术的过程。图像配准通常在计算机视觉中使用,本质上会覆盖多个图像,以揭示图像中的变化。例如,医学图像配准与医学扫描重叠,以比较和分析解剖差异。
由于ShadowCam会获取感兴趣区域的输入图像序列,因此它使用DSO图像配准方法来覆盖机器人同一视点上的所有图像。即使机器人在移动,它也可以将阴影定位在相同的像素点上,以帮助检测图像之间的细微偏差。
接下来是信号放大,其中可能包含阴影的像素的颜色增强,从而降低了信噪比。这使得来自阴影变化的极其微弱的信号更易于检测。
如果增强后的信号达到某个阈值(部分基于其与附近其他阴影的偏离程度),ShadowCam会将图像分类为“动态”。根据该信号的强度,系统可能会告诉机器人减速或停止。
在一项测试中,研究人员在停车场的自动驾驶汽车中安装了ShadowCam,该汽车的前大灯处于关闭状态,模仿夜间驾驶条件。他们将汽车检测时间与LiDAR进行了比较。在一个示例场景中,ShadowCam检测到汽车绕柱转弯的速度比LiDAR快0.72秒。此外,由于研究人员已针对ShadowCam专门针对车库的照明条件进行了调整,因此该系统的分类约为86%。
接下来,研究人员正在进一步开发该系统,以在不同的室内和室外照明条件下工作。将来,可能还会有一些方法可以加快系统的阴影检测速度,并自动为阴影感应标注目标区域的过程。