引言
在工业、汽车和仪器仪表应用中,因操作不当、存在电气噪声的操作环境,甚至雷击造成的大瞬态电压可能会形成巨大压力,导致通信端口和基础电子设备受损。对此,ADI推出了信号和电源隔离式ADM3055E/ADM3057E CAN FD收发器,能够承受其中许多瞬态电压,并保护敏感的电子设备。
根据IEC标准和瞬态电压大小,瞬态电压可分为静电放电(ESD)、电快速瞬变脉冲群(EFT)和浪涌。通过ADM3055E/ADM3057E CAN FD收发器的片内集成保护,可实现4级IEC 61000-4-2 ESD保护、IEC 61000-4-4 EFT抗扰度和4级+跨栅IEC 61000-4-5浪涌保护。
当跨栅浪涌通过iCoupler?隔离栅吸收时,通过总线侧接地返回的浪涌会在收发器上耗散大量功率,除非将这些浪涌转移。本文将介绍ADM3055E/ADM3057E收发器CAN FD端口上IEC 61000-4-5浪涌保护的解决方案。根据所需浪涌保护级别、共模范围要求和可用PCB面积,确定了设计选项的特性。
本文提及的组件测试使用ADM3055E/ADM3057E进行,其他器件(ADM3050E、ADM3056E和ADM3058E)将共用一个收发器芯片。
概述
CAN FD标准
CAN FD(具有灵活数据速率的控制器局域网)是内置故障处理功能的分布式通信的标准,该标准详细描述了基于ISO-118981-2:2016开放系统互连(OSI)模型的物理和数据链路层规定相关要求。CAN FD初专为汽车应用开发,由于其所用通信机制具有一些固有优势,因而广泛应用于工业和仪器仪表领域。
ADM3055E/ADM3057E隔离信号和电源收发器的扩展共模范围为±25V。共模范围超过ISO 11898-2:2016的要求,即使网络节点之间存在较大的接地失调,也能提供可靠的通信。在全速模式下,该隔离型收发器也大大超过ISO 11898-2:2016的时序要求。低环路延迟使设计人员能够将每位的大部分用于建立时间。扩展的共模范围和时序规范支持工业应用实现更可靠的远程通信。
有关CAN FD的更多信息,请参阅AN-1123。
ADM3055E/ADM3057E CAN FD收发器
在现场安装中,直接接触、电线损坏、感应开关、电源波动、电弧甚至附近的雷击都有可能对网络造成损坏。设计人员必须确保设备不仅能在理想条件下工作,而且能够在恶劣的现实环境中可靠运行。为了确保这些设计能够在电气条件恶劣的环境下工作,各个政府机构和监管机构推行了EMC法规。如果设计的产品符合这些法规,终端用户就会确信它们在恶劣的电磁环境下也能正常工作。
隔离信号和电源ADM3055E/ADM3057E CAN FD收发器是一款CAN FD物理层收发器。该器件采用ADI公司的iCoupler技术,将3通道隔离器、CAN FD收发器和ADI公司的isoPower?隔离型DC/DC转换器集成于单个表贴式小尺寸集成电路(SOIC_IC)封装中。
EFT和ESD瞬变具有相似的能量水平,ADM3055E/ADM3057E上的ESD和EFT防护通过片内保护结构实现。浪涌波形的能量水平要高很多,浪涌瞬态电压可以施加于隔离栅或收发器裸片。集成的iCoupler隔离栅技术为跨栅发生的浪涌瞬变提供了更强的保护。集成保护级别见表1。保护收发器免受高水平浪涌的影响需要外部保护器件,本文中将对此进行讨论。
表1.ADM3055E/ADM3057E的ESD和EFT保护级别
图1显示了1.2?s/50?s浪涌瞬变波形。标准的波形由波形发生器产生,用于表征开路电压和短路电流事件。浪涌瞬变被认为是严重的EMC瞬变,其能量水平比ESD或EFT脉冲中的能量大三到四个数量级。因此,由于其高能量,通常需要外部保护器件来提高浪涌抗扰度水平。
图1.IEC 61000-4-5浪涌1.2?s/50?s波形
图2显示了本应用笔记中用于浪涌测试的CAN端口的耦合网络。电阻并联总和为40?。对于半双工器件,各电阻为80Ω。请注意,浪涌测试期间还包括高速CAN总线的终端网络。
图2.适用于CAN FD收发器的浪涌耦合网络
种解决方案使用不同的瞬态电压抑制器(TVS)阵列。由两个双向TVS二极管组成的典型TVS阵列如图3所示。表2显示了有关防止浪涌瞬变的电压电平、共模电压和封装PCB尺寸的详细信息。
图3.TVS保护方案
典型双向TVS的I/V特性如图4所示。TVS的VRWM必须与CAN FD端口的共模电压匹配。确保击穿电压VBR在受保护引脚的正常工作范围之外,这一点也很重要。IPP的RDYN和VCLAMP较低,通常会将大部分浪涌电流分流至地,并将电压箝位到引脚的故障电压以下。
图4.典型双向TVS I/V特性
表2.TVS保护选项
TISP的非线性电压-电流特性通过转移产生的电流来限制过压。作为晶闸管,TISP具有非连续电压-电流特性,它是由于高电压区和低电压区之间的切换动作而导致的。图6显示了器件的电压-电流特性。在TISP器件切换到低电压状态之前,它具有低阻抗接地路径以分流瞬变能量,雪崩击穿区域则导致了箝位动作。
图6.TISP切换特性和电压限制波形